SFUND RECORDS CTR 88053524

Wehler Associates

Geolechnical and Water Resources Engineering

Phase II Hydrogeologic Investigation

JASCO Chemical Corporation

Mountain View, California

0816-00027

LAW OFFICES OF

MAILING ADDRESS
POST OFFICE BOX 7358
SAN FRANCISCO, CA 94120

TELEX
824040 KINBR UF
34485 KINBRO SFO
TELECOPY 415/982-1394

FOUNDING PARTNERS ROY A. BRONSON 1889-1977 EDWARD D. BRONSON, SR. 1893-1977 HAROLD R. McKINNON 1894-1977 BRONSON, BRONSON & MCKINNON A PARTNERSHIP INCLUDING PROFESSIONAL CORPORATIONS

Bank of America Center 555 California Street San Francisco 94104 415/986-4200 444 SOUTH FLOWER STREET
25th FLOOR
LOS ANGELES, CA 90017
213/626-5314
TELECOPY 213/626-7944

912 FORBES STREET LAKEPORT, CA 95453 707/263-6400

100 PRINGLE AVENUE WALNUT CREEK, CA 94598-3587 415/945-6660

November 3, 1987

AR0029

Mr. Steven Morse South Bay Division Chief California Regional Water Quality Control Board San Francisco Bay Region 1111 Jackson Street, Room 6040 Oakland, California 94607

Re: Jasco Chemical Corporation, 2189.8210 (DLH)

Dear Mr. Morse:

Enclosed is our Phase II Hydrogeologic Investigation for the JASCO site.

Should you have any questions concerning this report, please do not hesitate to contact me at your earliest convenience.

Sincerely,

JAMES L. JAF**F**E

JLJ/jal enclosure

cc: Mr. Dan Thomas

Firoz (Nick) Homayoungar, Ph.D.

Elizabeth Cameron

Phase II Hydrogeologic Investigation

JASCO Chemical Corporation

Mountain View, California

Prepared for:

BRONSON, BRONSON, AND MCKINNON

November, 1987

WAHLER ASSOCIATES

Geotechnical Engineers 1023 Corporation Way Palo Alto, California 94303 Telephone (415) 968-6250

Project JCO-104H

Geotechnical and Water Resources Engineering

November 5, 1987 Project JCO-104H

Mr. James L. Jaffe Bronson, Bronson and McKinnon Bank of America Center 555 California Street San Francisco, California 94104

Dear James,

Enclosed is a copy of our report describing the results of the Phase II Hydrogeologic Investigation performed at and in the vicinity of Jasco Chemical Corporation in Mountain View, California. Please do not hesitate to call if you have any questions regarding the topics discussed in this report.

Sincerely,

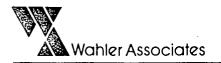
WAHLER ASSOCIATES

Robert G. Breynaert Project Manager

-L. NICK F. Homayounfar.

Department Head **Environmental Services**

BB:FH:1


TABLE OF CONTENTS

EXECUTIVE	SUMMARY	Page Number
Α.	INTRODUCTION	1
В.	WELL CONSTRUCTION, DEVELOPMENT AND SAMPLING PROGRAM	4
c.	RESULTS	9
D.	FUTURE WORK TO BE PERFORMED	17
Ε.	CONCLUSIONS	20
F.	LIMITATIONS	22
	TABLES	
Number		Following Page
1 2	Well Construction Information (Depths in Feet) Depth to Ground Water: A and B ₁ Aquifer Wells	22
. 3	(September 17, 1987 to October 14, 1987 Ground Water Elevations: A and B_1 -Aquifer	22
4 5	Monitoring Wells (September 17, 1987 to October 14, 1987) Summary of Chemical Analyses Performed Summary of Chemical Analysis Results (ppb)	22 22 22
	FIGURES	
Number		Following Page
E-1	A and B_1 Aquifer Monitoring Wells and	
	Geologic Cross Sections	E-3
1 2	Location of Study Area A and B ₁ Aquifer Monitoring Wells and Geologic	22
	Cross Sections	22
3	Well Completion Diagram of I-3	22
4	Well Completion Diagram of I-2	22
5	Key for Soil Exploration Logs	. 22
6	Geologic Cross Section A-A'	22
7	Geologic Cross Section B-B'	22
8	Geologic Cross Section C-C'	22
9	Geologic Cross Section D-D'	22
10	Geologic Cross Section E-E'	22
11	Potentiometric Surface A-Aquifer October 7, 1987	22
12	Potentiometric Surface B ₁ -Aquifer	
	October 7, 1987	22
Wahl	er Associates	

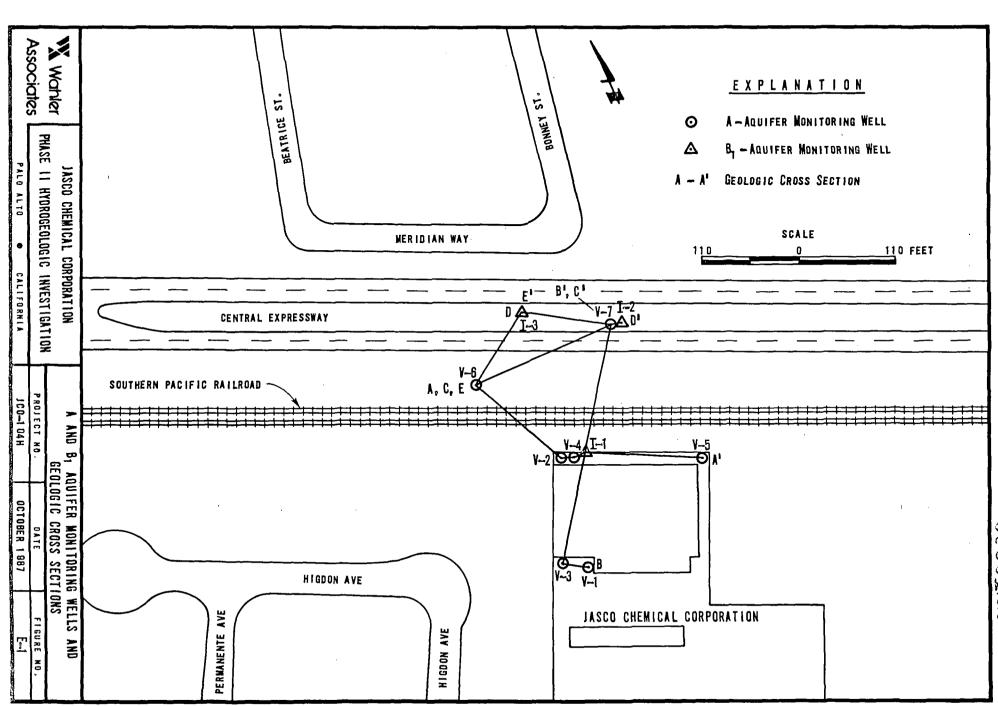
TABLE OF CONTENTS (Cont'd)

FIGURES

13	Distribution of I,I,I-TCA in A-Aquifer	
	Monitoring Wells - August 28, 1987	22
14	Distribution of 1,1,1-TCA in A-Aquifer	
	Monitoring Wells - September 25, 1987	22
15	Distribution of 1,1,DCA in A-Aquifer	
	Monitoring Wells - August 28, 1987	22
16	Distribution of 1,1,DCA in A-Aquifer	
_	Monitoring Wells - September 25, 1987	22
17	Distribution of 1,1,DCE in A-Aquifer	
	Monitoring Wells - August 28, 1987	22
18	Distribution of 1,1,DCE in A-Aquifer	0.0
- 0	Monitoring Wells - September 25, 1987	22
19	Distribution of Methylene Chloride in	0.0
	A-Aquifer Monitoring Wells - September 25, 1987	22
20	Concentration of 1,2-DCA, trans-1,2-DCE and MCL	0.0
0.1	in A-Aquifer Monitoring Wells - 8-28-87	22
21	Distribution of Purgeable Halocarbons in	22
2.2	A-Aquifer Monitoring Wells - September 25, 1987 Concentration of Benzene. Toluene, and Xylene	22
22	in A-Aquifer Monitoring Wells - 8-28-87	22
23	Distribution of Purgeable Aromatics in A-Aquifer	
23	Monitoring Wells - September 25, 1987	22
24	Distribution of Acetone and MEK in A-Aquifer	
4.4	Monitoring Wells - September 25, 1987	22
25	Distribution of Purgeable Halocarbons in	
	B ₁ -Aquifer Monitoring Wells - August 28, 1987	22
26	Concentration of 1,1,1-TCA, 1,1-DCA and Phenol	
	in B ₁ -Aquifer Monitoring Wells - 9-25-87	22
27	Temporal Variation in Chemical Concentration	
21	A-Aquifer Well V-2	22
28	Temporal Variation in Chemical Concentration	
	A-Aquifer Well V-4	22
	1	
	APPENDICES	
A	EXPLORATION BORING LOGS	
D	TADODATODY INVESTIGATION	
В	LABORATORY INVESTIGATION	
C	CHEMICAL ANALYSIS RESULTS	
D	QC DATA REPORTS AND CHROMATOGRAMS	
E	CHAIN OF CUSTODY RECORDS AND ANALYSIS REQUEST FORMS	
F	GROUND WATER SAMPLING PARAMETERS	
r	OKOOND MUTEK SWILLDING LUKWILLEKS	

SCOPE OF WORK

- o A Phase II hydrogeologic investigation was conducted from August through October 1987, at and in the vicinity of Jasco Chemical Corporation facility in Mountain View, California. The objectives of the investigation were: (1) To monitor spatial and temporal changes in the concentration of chemicals within the A-aquifer; (2) To better define the A-aquifer ground water gradient during non-pumping conditions at and in the vicinity of the Jasco facility; (3) To determine if off-site migration of chemicals has occurred within the B₁-aquifer; (4) To develop an understanding of the B₁-aquifer direction of ground water flow and magnitude of gradient; and (5) To assess the stratigraphy and hydrogeologic conditions north of the Jasco site, in particular, the vertical and lateral extent of the aquitard separating the A and B₁-aquifers.
- Two B₁-aquifer wells, I-2 and I-3, were installed on the median of the Central Expressway (Figure E-1) as part of this investigation. Two additional A-aquifer wells (V-8 and V-9) will be installed north of the Central Expressway as soon as the necessary permits are secured. V-8 and V-9 will aid in defining the northern extent of chemicals within the A-aquifer. Two rounds of ground water sampling and analysis were conducted at all newly installed and previously existing wells. In addition, four rounds of ground water level measurements were taken for all on and off-site wells.


CONCLUSIONS

o Four higher permeability units: the Vadose Higher Permeability Zone, (VHPZ), A-aquifer, B_1 -aquifer and the B_2 -aquifer exist in the upper 70 feet of section on the Central Expressway. The vertical permeabilities

of the higher permeability units, which range from 5.2×10^{-5} cm/sec to 2.3×10^{-4} cm/sec, are in the low end of the expected range for the types of soils encountered, due to the soils containing a relatively high percentage of fine-grained material. The VHPZ, A-aquifer, and B_1 -aquifer are of sufficiently low permeability to retard the vertical migration of ground water to deeper aquifers.

- The higher permeability units are separated by four lower permeability units: the Vadose Lower Permeability Zone (VLPZ), a lower permeability unit overlying the A-aquifer, the A-B₁ aquitard, and the B_1 - B_2 aquitard. The vertical permeabilities of the A-B₁ aquitard and the B_1 - B_2 aquitard, which range from 2.3×10^{-8} cm/sec to 3.1×10^{-7} cm/sec, are of sufficiently low permeability to significantly retard the vertical migration of ground water to deeper aquifers. The VLPZ had a higher vertical permeability than expected due to the presence of rootlet holes and rootlets in the samples.
- The general direction of ground water flow is N30°E within the A-aquifer and N15°E in the B_1 -aquifer. The A-aquifer magnitude of gradient is 0.004 ft/ft. The B_1 -aquifer magnitude of gradient is 0.003 ft/ft.
- The highest chemical concentrations were observed in A-aquifer wells V-2 and V-4, wells which have shown a significant reduction in chemical concentration over the past six to ten months. Off-site migration of 1,1,1-TCA, 1,1-DCA and 1,1-DCE, has been documented in A-aquifer wells V-6 and V-7 located 121 feet north, and 140 feet northeast of the Jasco site (Figure E-1). The northern extent of chemical migration within the A-aquifer will be better defined after the installation of the two additional A-aquifer monitoring wells. The western boundary of chemicals in the A-aquifer lies adjacent to well V-6. The eastern boundary lies between wells V-4 and V-5.

- Low concentrations of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE were identified in B₁-aquifer well I-2 and 1,1,1-TCA, and 1,1-DCA within I-1 during the August round of chemical testing. In the September round, chemicals were not detected in I-2. Low concentrations of both 1,1,1-TCA and 1,1-DCA were also detected in I-1 during the September sampling. Of the chemical concentrations detected in wells I-1 and I-2, only the 1,1-DCE identified in the August sampling of I-2 was above the DOHS recommended action level; 1,1-DCE was not detected in I-2 during the September sampling. Chemical concentrations were not detected in well I-3 during the August sampling. Phenol, which had not been detected previously in any of the on and off-site monitoring wells, was detected in well I-3 during the September sampling. Future sampling episodes are necessary before an accurate assessment can be made regarding the presence or absence of chemical concentrations within B₁-aquifer wells I-2 and I-3.
- A substantial reduction in the concentration of methylene chloride, 1,1,1-TCA and 1,1-DCA has been observed over the past 10 months in well V-2 and the past six months in well V-4. The reduction in concentration was induced by ground water extraction from wells V-2 and V-4. A second trend, which supports this conclusion is that an increase in the concentration of MCL, TCA, and DCA in V-2, and DCA in V-4 was observed after extraction from V-4 was stopped on August 21, 1987. These data indicate that the ground water extraction from V-4, which continues to this date, has been successful in reducing chemical concentrations within the A-aquifer at the locations where the highest concentrations have been observed.

PHASE II HYDROGEOLOGIC INVESTIGATION JASCO CHEMICAL CORPORATION MOUNTAIN VIEW, CALIFORNIA

A. INTRODUCTION

1. Purpose

This Phase II hydrogeologic investigation report has been prepared to satisfy the requirements of California Regional Water Quality Control Board (CRWQCB) Clean-up and Abatement Order (CAO) No. 87-094 submitted to Jasco Chemical Corporation on August 3, 1987. The objectives of this investigation were: (1) To monitor spatial and temporal changes in the concentration of chemicals within the A-aquifer; (2) To better define the A-aquifer ground water gradient during non-pumping conditions at and in the vicinity of the Jasco facility; (3) To determine if off-site migration of chemicals has occurred within the B_1 -aquifer; (4) To develop an understanding of the B_1 -aquifer direction of ground water flow and magnitude of gradient; and (5) To assess the stratigraphy and hydrogeologic conditions north of the Jasco site, in particular, the vertical and lateral extent of the aquitard separating the A and $\mathrm{B}_{\mathrm{1}}\text{-}$ aquifers. This report presents the methods used during the well construction, sampling, and development, an interpretation of the stratigraphy encountered during drilling, maps of the A and \mathbf{B}_1 -aquifer potentiometric surface, the chemical testing results, and conclusions based on these data. In addition, a section is included on work to be performed in the future.

This report is organized into six sections: (A) An introductory section (B) The well construction, development, and sampling procedures, (C) presentation of the results and interpretation of the site hydrogeology, (D) a discussion of future work to be performed, (E) a conclusions section, and (F) a statement of limitations.

A hydraulic testing report is in preparation at this time which describes the results of pumping and slug tests performed at and in the vicinity of

the Jasco site. The hydraulic testing report will assess the performance of the ground water extraction system currently in operation. In addition, the report will contain horizontal hydraulic conductivity estimates for the A-aquifer based on the slug and pumping test data, as well as a section discussing the vertical hydraulic gradient between the A and B_1 -aquifers.

2. Background Information

Jasco Chemical Corporation is located at 1710 Villa Street in Mountain View, California (Figure 1). The 2.05-acre Jasco facility is bordered on the north by the Southern Pacific Railroad, main line right-of-way (Figure 2). To the east of the facility is Villa Mariposa, an apartment complex. Single and multi-family dwellings located along Higdon Avenue border the Jasco site to the west. Villa Street is located south of the Jasco site.

A preliminary investigation was performed at the Jasco facility by Questa Engineering from May of 1984 through December of 1986. Three A-aquifer monitoring wells, V-1, V-2, and V-3, were installed during that phase of the investigation.

Wahler Associates was retained by Jasco in December of 1986 to continue the preliminary investigation at the Mountain View facility. On December 19, 1986, a shallow soil gas investigation was performed at the Jasco facility and surrounding area. For a complete discussion of the sampling strategy, sampling procedures, and results, consult the draft report prepared by Wahler Associates dated January 19, 1987.

On June 5, 1987 a phase I hydrogeologic investigation report was submitted to the CRWQCB. During that phase of the investigation four A-aquifer monitoring wells V-4 through V-7, and one B_1 -aquifer monitoring well, I-1, were installed. On June 26, 1987 a site inspection report was submitted to the CRWQCB on behalf of Jasco Chemical Corporation. An on-site source identification investigation report was submitted to the CRWQCB on July 6, 1987. Eight 21.5-foot exploratory soil borings were advanced during that phase of the investigation.

3. Scope of Work Performed

As part of the Phase II program, two B₁-aquifer monitoring wells, I-2 and I-3, were installed. The well construction information for I-2 and I-3 is contained in Table 1. In the Phase II proposal dated July 7, 1987, it was stated that two additional A-aquifer monitoring wells would be installed as part of this program. The two A-aquifer wells have not been installed as of the writing of this report due to permitting difficulties. At this time, a permit has been obtained from the City of Mountain View authorizing that one of the wells be installed on city property. The second A-aquifer monitoring well is stated to be installed in County of Santa Clara owned property. A right-of-entry permit will be obtained from the county before drilling begins. In addition to the well installation, weekly water-level measurements were taken from both the newly installed and previously existing wells (Table 2). After ground water elevations were calculated from the water level data (Table 3), maps were prepared showing both the ground water gradient and direction of ground water flow.

Ground water samples were obtained from monitoring wells V-1 through V-7 and I-1 through I-3 on August 27-28, 1987 and September 24-25, 1987. Chemical testing was performed on the ground water samples. The testing program was designed to include those chemicals that are at present, or were in the past, stored at the Jasco facility (Table 4). The scope of chemical testing followed the suggested program outlined in the July 15, 1987 letter from Mr. Steve Morse of the CRWQCB to Mr. James Jaffe. During both rounds of testing, ground water samples from the existing on and off-site wells (V-1 through V-7 and I-1) were analyzed for: purgeable halocarbons and aromatics according to EPA Methods 601/602 plus analysis for methyl ethyl ketone (MEK) and xylenes, phenols according to EPA Method 604, total hydrocarbons as paint thinner, and alcohols/acetone. The ground water samples from wells I-2 and I-3 obtained on August 28, 1987 were analyzed for purgeables according to EPA Method 624. Open scans were also performed on the ground water from I-2 and I-3 to determine the presence of any non-priority volatile organics within the samples. The same testing program used for

wells V-1 through V-7 and I-1 was followed during the September 25, 1987 sampling of I-2 and I-3. A more detailed discussion of the well installation, development and sampling procedures will be presented below.

B. WELL CONSTRUCTION, DEVELOPMENT AND SAMPLING PROGRAM

1. Well Construction Methods

The main objective in installing monitoring wells I-2 and I-3 was to determine the presence or absence of chemicals in B_1 -aquifer ground water to the north of the Jasco site. To ensure that the installation of wells I-2and I-3 did not result in the cross-contamination of the A- and B_{1} aquifers, well I-1 was installed in three steps: (1) a pilot boring was drilled using a CME-75 drill rig. The pilot borings were drilled to accurately determine the position of the contact between the A-aquifer and the underlying $A-B_1$ -aquitard. Soil samples were obtained using a 5-foot long, 2.5-inch diameter continuous sampler. Continuous sampling was performed in lieu of drive sampling because continuous sampling allows a complete section of sediment to be recovered, thereby permitting accurate identification of high and low permeability zones. Before drilling each 5-foot section, the continuous sampler was inserted into the hollow-stem auger so that the core cutter at the base of the sampler was flush with the base of the auger. As the auger turned into the soil, the continuous sampler remained stationary within the hollow-stem. This allowed an undisturbed, continuous, five-foot section of soil to be recovered with each section of hollow-stem auger that was advanced down-hole. In advance of pushing the continuous sampler down-hole, two, 2.5-inch diameter, 2.5-foot-long plastic core liners were placed inside the sampler. After a 5-foot interval was drilled, the sampler was recovered from the hollow-stem auger, and the core liners removed. The sediments were then examined within or removed from the core liners to facilitate logging the soils and to determine the stratigraphy. After field logging, the soil samples were carefully placed back into the core liners, sealed, and placed in storage at Wahler Associates' Palo Alto offices. The soil borings were logged in the field by a Wahler Associates' geologist,

under the supervision of a certified engineering geologist. The stratigraphy encountered during drilling is summarized in the boring logs located in Appendix A. After drilling was terminated each of the pilot borings was backfilled to the surface with cement grout; (2) Following the drilling of the pilot borings, steel conductor casings were installed adjacent to the location of the pilot borings using a Failing 1500 mud rotary drill rig. The conductor casing borings were first drilled to 40.0 feet, in the case of I-2, and 29.0 feet at I-3. Following the drilling, the conductor casings were installed then pushed two feet into the A/B_1 aquitard material using the drill rig. The casings were then grouted into place by pumping cement grout into the annulus through a tremie pipe; the grouting was done under the supervision of a Santa Clara Valley Water District (SCVWD) inspector; (3) After allowing sufficient time for the grout to set, the conductor casings were entered by the Failing-1500 drill rig, and secondary borings drilled into the B_1 -aquifer at each well site.

The boring for I-2 was terminated five feet into the underlying $\mathrm{B_1}$ - $\mathrm{B_2}$ aquitard. The bottom five feet of boring I-2 was backfilled with bentonite pellets, up to the $\mathrm{B_1}$ -aquifer/ $\mathrm{B_1}$ - $\mathrm{B_2}$ aquitard contact. $\mathrm{B_1}$ -aquifer monitoring well I-2 was completed using 2-inch schedule 40, flush-threaded PVC casing with 0.010-inch, factory-made slots. A No. 3 sand pack was tremied into position around the slotted portion of the casing. A 2-foot bentonite seal was placed above the sand pack. After the bentonite pellets had enough time to form a reliable seal, a sanitary seal consisting of cement grout containing five percent powdered bentonite was tremied into place under the supervision of a SCVWD inspector. While the cement was still moist, an above-ground, steel, locking well cover was installed over the PVC well casing. Table 1 and Figure 4 contain the well construction information for well I-2.

During the construction of the secondary boring for well I-3, the contact between the B_1 -aquifer and the B_1 - B_2 aquitard was encountered at 56.5 feet, two feet deeper than in boring I-2 (see boring log Appendix A). At I-2, at least five feet of blue-gray sandy clay exist below the B_1 -aquifer. At I-3,

only one-foot of the same type of sandy clay was encountered below the B_1 -aquifer. Below this clay layer, which extended from 56.5 to 57.5 feet, aquifer material consisting of gravelly sand was encountered to a depth of 71.0 feet. When it became apparent that a competent clay aquitard with a minimum thickness of five feet did not exist at the same stratigraphic interval as that encountered at I-2, a field decision was made to screen well I-3 in the same stratigraphic interval as I-2. To accomplish this, the boring was backfilled from 71.0 feet to 59.0 feet with No. 3 sand and then to 56.0 feet with bentonite pellets. The bentonite was placed from 1.5 feet below the blue-gray sandy clay layer to 0.5 feet above the clay, a total of 3.0 feet. This conservative approach to the construction of I-3 was taken because it was interpreted that the blue-gray sandy clay interval encountered in both I-2 and I-3 is the same stratigraphic unit, which is designated as the B_1/B_2 aquitard. Wahler Associates is of the opinion that it is prudent to terminate a well above what is interpreted to be an aquitard unit even though it is less than five feet in thickness rather than screening a well through a potential aquitard. After drilling was terminated, monitoring well I-3 was completed using 2-inch, schedule 40, flush-threaded, PVC casing with 0.010-inch factory-made slots. The well was sand packed, sealed, and completed using the same techniques as well I-2. Table 1 and Figure 3 contain the well construction information for B_1 -aquifer well I-3.

During the drilling of wells I-2 and I-3, soil samples were taken using a continuous sampler, in the case of the pilot borings (see above), and with a California modified (Calmod) sampler equipped with 2.5-inch inside diameter brass liners during the mud rotary drilling. A 140-pound hammer falling 30 inches was used to drive the Calmod sampler. Soil samples were inspected in the field to determine the stratigraphy. The soil borings were logged by a Wahler Associates geologist under the supervision of a certified engineering geologist.

After installation, the top of the protective casing and the ground surface at each well location were surveyed by a State of California certified

surveyor. The top of the protective casing (cover open) was used as the reference elevation in the calculation of the ground water elevation data. The elevation data are presented in Table 2.

Five soil samples from each boring were tested for the following set of properties at Wahler Associates' materials testing laboratory. The property tests performed include: natural and as tested water content and dry density, vertical permeability, grain-size distribution, and Atterberg limits. The grain-size distribution data were used to aid in the classification of key aquifer and aquitard units. The vertical permeability data were used to assess the lateral variability in vertical permeability within discrete stratigraphic units and also the variation with depth in a particular boring. A discussion of the materials testing procedures as well as the test results are included in Appendix B. The materials testing results will be discussed in the results section of this report.

2. Well Development

After installation, each well was developed with pressurized nitrogen. Steam-cleaned PVC tubing was lowered to the bottom of each well and secured at the surface with duct tape. Pressurized dry nitrogen was then injected through the tubing at 50-100 psi displacing the standing water in each well. The process was repeated until the ground water was free of fine sand and other sediment. A total of 110 gallons of water were removed from both I-2 and I-3 during the development process.

3. <u>Sampling Program</u>

Before ground water samples were obtained for chemical analysis, 3.0 to 4.5 bore volumes of ground water were removed from each well using a steam-cleaned Teflon bailer. Ground water was removed from each well prior to sampling to ensure that the samples used for chemical analysis were freshly drawn formational ground water, not ground water that had been in the well casing for an undetermined period of time. Two rounds of ground

water sampling and analysis were performed: August 27-28, 1987 and September 24-25, 1987.

The ground water samples were taken from each well using a steam-cleaned bailer. A separate bailer was used for each well to reduce the possibility of cross-contamination. After removal, each sample was promptly placed in a chilled cooler and delivered to a State of California Department of Health Services (DOHS) certified laboratory for chemical analysis. The testing program for wells V-1 through V-7 and I-1, is summarized in Table 4 and included EPA Methods 601/602 - purgeable halocarbons and aromatics, EPA Method 604 - phenols, total hydrocarbons as paint thinner, and analysis for alcohols/acetone.

The ground water samples taken from wells I-2 and I-3 during the August 27-28 sampling were analyzed for purgeable compounds using EPA Method 624. An open-scan was also performed on the samples from wells I-2 and I-3 to determine if the ground water contained any non-priority purgeable compounds. During the September 24-25, 1987 sampling, the same set of tests that were performed on wells V-1 through V-7 and I-2 (Table 4) were also performed on ground water samples taken from wells I-2 and I-3. The chemical testing program is outlined in Table 4 and the results are summarized in Table 5 and presented in Appendix C.

4. Ground Water Elevation Measurements

Ground water level measurements have been taken on a weekly basis from all Jasco wells. The ground water depth data along with the elevations of the ground surface and reference points of each well are presented in Table 2. The ground water elevation data are summarized in Table 3. Potentiometric surface maps for the A and B_1 -aquifers constructed using data collected on October 7, 1987 are presented in Figures 11 and 12.

C. RESULTS

1. Stratigraphic Interpretation

The boring logs from monitoring wells I-2 and I-3 have been used along with the logs from previously installed wells to construct geologic cross-sections through the study area. Figure 2 shows the locations of the cross-sections and monitoring wells.

Cross-sections D-D' and E-E' have not been presented previously (Figures 9 and 10). Cross-sections A-A', B-B', and C-C' are also presented (Figures 6, 7, and 8). Cross-sections A-A', C-C', and D-D' are oriented roughly perpendicular to the direction of ground water flow. Cross-sections B-B' and E-E' are oriented roughly parellel to the direction of ground water flow.

The stratigraphy encountered in the completed borings can be divided into four relatively permeable zones: the Vadose Higher Permeability Zone, the A-aquifer, the B_1 -aquifer, and the B_2 -aquifer, separated by zones of lower permeability including the Vadose Lower Permeability Zone, the A- B_1 aquitard, and the B_1 - B_2 aquitard. The soil types have been classified according to the Unified Soil Classification System which is summarized on Figure 5.

a. <u>Vadose Lower Permeability Unit</u> - The upper 9 to 18 feet of section encountered in wells V-1 through V-7 and I-1, 2, and 3 consist of clay, and silty, sandy, or gravelly clay. In I-2, a soil sample from approximately 14 feet (I-2,T6) was classified as a CH with a vertical coefficient of permeability of 2.4x10⁻⁴ cm/sec. A sample from approximately 13 feet in I-3 was classified as a CL, with a vertical coefficient of permeability of 2.5x10⁻⁴ cm/sec. The vertical permeabilities of the clay samples are much higher than one could expect considering their composition. Laboratory analysis revealed that both of the samples contained rootlets and rootlet holes; features which can increase the permeability of a soil sample.

A lower permeability unit consisting of clay to sandy clay is located between the VHPZ (discussed below) and the A-aquifer. In V-7 and I-2, this unit is located within the vadose zone. In I-3, this lower permeability unit is located within the zone of saturation.

b. <u>Vadose Higher Permeability Zone (VHPZ)</u> - The VHPZ ranges in thickness from a few inches in the case of V-7 and I-2 to 14.9 feet as was observed in V-5. In I-3, the VHPZ consists of 7.8 feet of dark, yellow-brown, silty to gravelly sand. The VHPZ appears to thin towards the northeast, as evidenced by the unit being represented by 7.8 feet of gravelly and silty sand in I-3, a 0.9-foot layer of gravelly clay in I-2, and by an increase in gravel content within a clay layer in V-7 (Figure 9). This type of deposition pattern is common in an alluvial setting where rapid changes in stratigraphy are observed over short distances, both vertically and laterally.

Properties testing was performed on one VHPZ section sample from I-3 (I-3, T-10). The grain size analysis and vertical permeability testing revealed the soil to be an SP-SM, with a vertical permeability of 5.2×10^{-5} cm/sec, which is rather low for sandy material. Even though the VHPZ is composed of predominantly sandy material, the VLPU has a higher coefficient of permeability, induced by rootlets and rootlet holes present in the clay.

c. A-Aquifer - In wells V-1 through V-7 and I-1, the A-aquifer ranges in thickness from 0.5 to 13.5 feet. In V-7, located adjacent to I-2 on the median of the Central Expressway, the A-aquifer is represented by 13.5 feet of alternating layers of sand, gravel, and clay. In I-2, located 8 feet east of V-7, the A-aquifer is represented by 14.7 feet of gravelly sand and silty sand. Soil sample I-2, T-13, identified in the field as an SM, was determined in the laboratory to be an SW-SM with a vertical permeability of 2.3x10⁻⁴ cm/sec, which is rather low for this silty sand. From a comparison of the boring logs of I-2, I-3, and V-7, it is apparent that the thickness of the A-aquifer decreases towards the west on the median of the Central Expressway. At I-3, the equivalent of the A-aquifer is recognized as a change in the color of the soil from dark, greenish-gray to yellow-brown, as

well as an increase in the sand content of the clayey material (see boring log in Appendix A, Figure 9). A sample of the A-aquifer equivalent material in I-3 was not analyzed in the materials testing laboratory, as it was not recognized as aquifer material in the field.

- d. $\underline{A-B_1}$ Aquitard The full thickness of the $A-B_1$ aquitard has been penetrated by B_1 -aquifer wells I-1, 2, and 3. The thickness of the $A-B_1$ aquitard ranges from 6.5 feet at I-1, to 17 feet at I-2, and finally 14 feet at I-3 (Figure 9). The $A-B_1$ aquitard is composed of clay to sandy clay. Properties testing was performed on two samples of $A-B_1$ aquitard material. Sample I-2, T-15 was classified as a CL with a vertical permeability of 3.1×10^{-7} cm/sec (Table B-1). Sample T-12 from I-3, was also classified as a CL, but had a slightly higher vertical permeability, 2.8×10^{-6} cm/sec. Rootlets or rootlet holes were not observed in either of the $A-B_1$ aquitard samples. The vertical permeability data indicate that the $A-B_1$ aquitard is of sufficient low permeability to substantially retard the vertical migration of ground water to deeper aquifers.
- e. \underline{B}_1 -Aquifer Before the installation of B_1 -aquifer monitoring wells I-2 and I-3, the full thickness of the B_1 -aquifer had been penetrated only at I-1 where it was composed of gravelly sand (SP-GP) and had an observed thickness of 11.2 feet. At I-2, the B_1 -aquifer is composed of 7.5 feet of silty, gravelly, sand, identified in the laboratory as an SW-SM, with a vertical permeability of 2.3×10^{-4} cm/sec. The B_1 -aquifer at I-3 is composed of 9.0 feet of gravelly sand, identified in the laboratory as an SW. The vertical permeability observed at I-3, 1.2×10^{-4} cm/sec is similar to that observed for the B_1 -aquifer at I-2. The vertical permeability values obtained for soil samples from the B_1 -aquifer are similar to the value calculated for the A-aquifer material taken from I-2 (2.3×10^{-4} cm/sec).
- f. $\underline{B}_1 \underline{B}_2$ Aquitard At I-2, five feet of $\underline{B}_1 \underline{B}_2$ aquitard material were penetrated before drilling was terminated at 59.5 feet. Laboratory testing revealed the aquitard material to be a CL (field identified as a sandy clay) with a vertical permeability of 2.3×10^{-8} cm/sec. At I-3, a one-foot thick

bed of bluish-gray, sandy clay, of the same type as observed in I-2, was found from 56.5 to 57.5 feet (see Figure 9, Appendix B, Table B-1). As discussed above, in the Well Construction Section, drilling continued after penetration of the sandy clay unit until it became apparent that an aquitard of at least five feet in thickness did not exist in I-3 at the same depth range as observed in I-2. A sample taken from the sandy clay unit (I-3, R-6) was identified in the materials laboratory as an SC (clayey sand). Although the sample was identified as an SC, the vertical permeability, $2.9x10^{-7}$ cm/sec, is typical for aquitard material. Although only one foot of aquitard material exists between the B_1 and B_2 -aquifers at I-3, the stratigraphic and permeability data strongly show that first, the same aquitard exists at both locations, and second, the B_1 - B_2 aquitard is of low permeability $(2.9 \times 10^{-7} \text{ cm/sec} \text{ at I-3} \text{ and } 2.8 \times 10^{-8} \text{ cm/sec} \text{ at I-2})$. The permeability data indicate that the $\mathrm{B}_1\mathrm{-B}_2$ aquitard is of sufficiently low permeability to substantially retard the vertical migration of ground water to deeper aquifers.

g. \underline{B}_2 -Aquifer - The \underline{B}_2 -aquifer was penetrated only at I-3. During the drilling of I-3, it was observed that the \underline{B}_1 and \underline{B}_2 aquifers are very similar in composition, both being composed of dark, yellow-brown gravelly sand. The top of the \underline{B}_2 -aquifer was penetrated at 57.5 feet. I-3 was terminated at 71.0 feet without reaching the bottom of the \underline{B}_2 -aquifer. A total of 13.5 feet of \underline{B}_2 -aquifer material were penetrated.

The vertical permeability data from both the higher and lower permeability units have shed light on the ability of the soils within the study area to vertically transmit ground water. With the exception of the VLPZ, the lower permeability units are of sufficiently low permeability to significantly retard the vertical migration of ground water to deeper aquifers. In addition, although the vertical permeabilities of the aquifer units are within the range of values expected for sandy soils in an alluvial setting, they are on the low end of the expected range due to the aquifer material containing a relatively high percentage of clay and silt. The horizontal permeability and hydraulic conductivity characteristics will be evaluated in

the hydraulic testing report which is in preparation. The vertical permeability data are as the name suggests, an assessment of permeability in a vertical direction. They should not be used in calculations of horizontal flow velocity within the aquifer units.

2. Ground Water Elevations

Four episodes of ground water level and elevation data are presented in Tables 2 and 3. Maps of both the A and B_1 -aquifer potentiometric surface have been constructed using water level data collected on October 7, 1987 (Figures 11 and 12). All of the data presented in Tables 2 and 3, were collected after ground water extraction from V-4 had been stopped on August 21, 1987, to allow the A-aquifer to recover in preparation for hydraulic testing.

Examination of Figure 11 reveals that at the time the ground water level data were taken, the general direction of ground water flow in the A-aquifer was 30 degrees east of north (N30°E) and the gradient 0.004 ft/ft. The water level data from wells I-1, I-2, and I-3, indicate that the general flow direction of B_1 -aquifer ground water is N15°E. The B_1 -aquifer ground water gradient is 0.003 ft/ft. The ground water elevation data from the A-aquifer wells indicate that at the time the data were taken, 48 days after cessation of extraction, the A-aquifer had fully recovered.

3. Chemical Analysis Results

The scope of chemical testing performed as part of this Phase II investigation is summarized in Table 4. The results of the chemical analyses are summarized in Table 5 and presented in Appendix C. The laboratory QC data and chromatograms are exhibited in Appendix D. The sample chain of custody/analysis request records are presented in Appendix E. Appendix F contains the ground water sampling parameter records. Figures 13 through 24 display the lateral distribution of chemicals within the A-aquifer at and in the vicinity of the Jasco site. Maps showing the

distribution of chemicals in the B_1 -aquifer at and in the vicinity of Jasco are shown on Figures 25 and 26. Plots showing the temporal change in chemical concentrations at A-aquifer wells V-2 and V-4 are shown on Figures 27 and 28.

Lateral Distribution of Chemicals Within the A-aquifer - Two rounds of chemical testing were performed on ground water samples taken from A-aquifer wells V-1 through V-7. The first round of sampling was performed on August 27-28, 1987, and the second on September 24-25, 1987. The scope of chemical testing is summarized in Table 4 and discussed in Section B-3. Figures 13 and 14 display the distribution of 1,1,1,-TCA in A-aquifer monitoring wells. The highest concentrations of 1,1,1-TCA were observed in wells V-2 and V-4. 1,1,1-TCA has migrated off-site within the A-aquifer as evidenced by the existence of low concentrations in wells V-6 and V-7. The western boundary of off-site migration is likely located adjacent to well V-6 where 1,1,1-TCA was found at 0.0045 ppm and 0.0025 ppm (Figures 13 and 14). The northern boundary of the plume lies to the north of V-7. The installation of monitoring wells V-8 and V-9 should aid in locating the northern extent of 1,1,1-TCA in A-aquifer ground water. The eastern boundary of the 1,1,1-TCA plume is located between wells V-4 and V-5 (Figures 13 and 14). From the data on hand, the A-aquifer distribution of 1,1-DCA, which is a degradation product of 1,1,1-TCA, is similar to that of 1,1,1-TCA (Figures 15 and 16), with the exception of well V-6, where 1,1-DCA has not been detected during any of the sampling episodes performed by Wahler Associates.

The A-aquifer distribution of 1,1-DCE, another degradation product of 1,1,1-TCE, is shown on Figures 17 and 18. As with 1,1,1-TCA and 1,1-DCA, the highest concentrations of 1,1-DCA was found in wells V-2 and V-4. The concentration of methylene chloride (MCL) in A-aquifer wells on September 24-25, 1987 is shown on Figure 19. MCL has been found in three A-aquifer wells, V-2, V-3, and V-4. The highest concentration of MCL was found in V-2. Three separate analyses for MCL were performed on ground water samples taken on August 28, 1987 and two on samples acquired on September 25, 1987. The three August analyses, and one of the September analyses are within

0.055 ppm of the mean value, 0.215 ppm. The second September analysis recorded an MCL concentration of 4.600 ppm, which is an order of magnitude higher than both the September duplicate analysis and both of the August analyses. The laboratory responsible for this anomalous result has been asked to check the reliability of the 4.600 ppm value.

A number of other chemical species have been identified in samples from wells V-1 through V-7. Isoconcentration maps have been prepared for only those chemical species which are present in three of more wells. The balance of the A-aquifer chemical analyses are summarized on Figures 20 through 24.

<u>Lateral Distribution of Chemicals Within the B_1 -Aquifer</u> - Two rounds of chemical testing were performed on ground water samples taken from B_1 -aquifer wells I-1, I-2 and I-3. Very low concentrations of 1,1,1-TCA and 1,1-DCA, below State of California DOHS recommended action levels, were identified in both the August 28, 1987 and September 25, 1987 samples taken from I-1 (Figures 25 and 26). The August sampling of well I-2, revealed 1,1,1,-TCA and 1,1-DCA in concentrations below DOHS action levels and 1,1-DCE slightly above the DOHS action level. In the September sample, the same compounds were non-detectable in I-2 at a detection limit of 0.0005 Additional chemical testing is required before a reliable ppm. determination can be made regarding the presence or absence of chemicals in well I-2. None of the chemicals tested for were detected in the August sample from I-3. One compound, phenol at 0.020 ppm, was detected in the September sample. The DOHS action level for phenol is 0.001 ppb. Since phenol has not been detected in any of the other monitoring wells in the Jasco study area, it is unknown whether the chemical was introduced as a laboratory contaminant or is actually present in the ground water at this location. Additional testing of ground water from I-3 will verify if phenol continues to be present in the ground water at this location.

It should be noted that of the chemicals found in the B_1 -aquifer wells, only phenol in I-3 and 1,1-DCE in I-2 exceeded the DOHS recommended action

levels. In addition, both of the chemical species were not detected in the additional sampling that was performed.

Temporal Changes in Chemical Concentrations Within the A-Aquifer -Temporal changes in the concentration of chemicals within A-aquifer monitoring wells have been observed over the past nine months. As discussed above, the highest chemical concentrations have been observed in wells V-2 and V-4. Figures 27 and 28 display the temporal variation in the concentrations of methylene chloride (MCL), 1,1,1-TCA (TCA) and 1,1-DCA (DCA) over the past nine months in the case of V-2, and five months in the case of V-4. MCL, TCA, and DCA were chosen for display because of the chemicals tested for, these three chemicals have been found in the highest concentration. Also plotted on Figures 27 and 28 are the time periods during which ground water was being extracted from V-2 and V-4. Day zero on each of the figures corresponds to the first day a ground water sample was taken from each of the wells: December 17, 1986 in the case of V-2 and April 3, 1987 for V-4. Ground water extraction from V-2 began on February 20, 1987 (day 66) and ended April 10, 1987 (day 115) (Figure 27). At V-4, ground water extraction began on April 10, 1987 (day 8) and was temporarily stopped on August 21, 1987 (day 141, Figure 28). Extraction from V-4 was stopped on day 141 to allow the A-aquifer to recover in preparation for the aquifer testing phase of the investigation. Extraction from V-4 was resumed on October 9, 1987. Two episodes of chemical testing were performed during the shutdown period (Figures 27 and 28).

Two trends are apparent from the examination of Figures 27 and 28: during the periods of extraction, a reduction in the concentration of MCL, TCA and DCA was observed. Not shown on Figure 27 are the results for MCL from the December 17, 1986 and February 20, 1987 sampling episodes when MCL was observed at 30.0 and 86.0 ppm. The concentration of MCL decreased from the 86.0 ppm level observed before extraction from both V-2 and V-4 began, to 0.84 ppm observed on June 22, 1987, the last sampling episode before extraction from V-4 was stopped. Examination of Figure 28 also reveals that a decrease in MCL, TCA, and DCA was also observed in V-4 during the period

of extraction. Thus, the extraction of ground water has resulted in a substantial reduction in chemical concentrations within the extraction wells during the time interval when ground water was being extracted. In addition, a reduction in concentration occurred in V-2 when V-4 was used for extraction; this indicates that the well V-2 lies within the Zone of Capture of V-4. The second trend observed in Figures 27 and 28 is that an increase in the concentration of MCL, TCA, and DCA in V-2, and DCA in V-4, was observed after extraction from V-4 was stopped on August 21, 1987. This trend lends support to the contention that extraction from V-4 and V-2 has been successful in reducing the concentrations of chemicals in the vicinity of the extraction wells. Future sampling episodes will reveal if the downward trend in the concentration of MCL, TCA, and DCA has resumed as a result of the commencement of extraction from V-4.

D. FUTURE WORK TO BE PERFORMED

This section of the report discusses the work to be completed in the future which will aid in documenting changes in the vertical and lateral extent of chemicals within the A and B₁-aquifers, as well as better defining the northern extent of chemicals within the A-aquifer. As discussed above, two additional A-aquifer monitoring wells are scheduled to be installed north of the Central Expressway as soon as the necessary permits are secured. These two wells will aid in defining the northern extent of chemicals within the A-aquifer.

The ground water sampling program proposed for all on and off-site monitoring wells is outlined below: all A and B_1 -aquifer monitoring wells (Figure 2) will be sampled on a quarterly basis. Ground water samples will be analyzed for purgeable halocarbons and aromatics using EPA Method 601/602, including MEK and xylenes, phenols using EPA Method 604, total hydrocarbons as paint thinner, and for alcohols/acetone. Samples will be collected on an annual basis from on and off-site wells and analyzed for purgeables using EPA Method 624 (plus open-scan for non-priority compounds),

phenols using EPA Method 604, total hydrocarbons as paint thinner, and alcohols/acetone. The next round of sampling is scheduled to be performed on December 22-23, 1987. The results of the chemical testing will be reported to the CRWQCB within the quarterly reports, the next one of which is due December 15, 1987.

The purging and ground water sampling will be performed using a pre-steam cleaned Teflon bailer. Three or more bore volumes of ground water will be removed from each well before a sample is taken. During the purging process, temperature, pH, and conductivity will be monitored; sampling will not occur until the three parameters have stabilized. Samples will not be filtered in the field. If a sample requires filtering before analysis, the laboratory that performs the analysis will perform the filtering. The ground water samples which will be analyzed using EPA Methods 601, 602, 624, and the scans for total hydrocarbons as paint thinner and alcohols/acetone will be submitted to the laboratory in airtight VOA vials containing Teflon septa. The EPA Method 604 samples will be submitted in one liter, amber, glass jars. After collection, the VOA vials and one liter amber jars will be placed in a chilled cooler. The samples will be kept cool until delivery to a State of California DOHS certified laboratory. After collection, the samples will either be delivered to the laboratory by Wahler Associates' personnel or will be picked up at Wahler Associates' Palo Alto offices by a representative of the laboratory. At the time of sample delivery, chain-of-custody forms will be signed by representatives of Wahler Associates and the laboratory performing the analyses. The laboratory will be instructed to document the quality of the samples delivered as compared to appropriate standards.

The quality assurance/quality control plan for the chemical testing will consist of: one or two duplicates per round of sampling. The actual number will depend on whether one or two days were required to perform the sampling. In addition, one method (equipment rinsate) blank will be submitted per round of sampling. Lastly, one travel blank will be submitted per day of sampling. The duplicates, method blanks and travel blanks will

be analyzed for purgeable halocarbons and aromatics using EPA Methods 601/602 plus MEK and xylenes. With every round of sampling results, a quality control data report will be submitted containing the results of the duplicate and spike analyses. Percent deviation and percent recovery data will be included. One such report will be submitted for each testing method performed per round of testing. The laboratory chromatograms of the blanks, standards and actual ground water samples will be submitted with the quality control data report. One set of chromatograms will be submitted for each testing method performed per round of testing.

Each of the laboratory reports will contain the dilution factor and detection limits based on limits of quantification. Each piece of equipment used during the sampling procedures will be steam-cleaned prior to and after use to assure decontamination. In addition, the bailer rope will be changed between wells. A separate bailer will be used per well for each day of sampling. If a bailer has to be used more than once on a particular day, the bailer will be steam-cleaned between uses. Water removed from each well during the purging procedure will be disposed of in the sanitary sewer at the Jasco facility. Jasco Chemical Corporation has a permit from the City of Mountain View to discharge extracted ground water to the sanitary sewer.

In addition to the chemical testing, weekly water level measurements will be taken from all on and off-site wells. The water levels will be measured to the nearest 0.01-foot. The water level data will be collected using an electric water level meter. The measurements will be taken relative to either the top of the protective casing or cristy box. The elevation of the top of protective casing/cristy box, as well as the ground elevation at each well has been surveyed by a State of California certified surveyor. The elevation data, along with the ground water level data, will be used to calculate ground water elevation data. The ground water elevation data along with potentiometric surface maps for the A and B_1 -aquifers will be submitted to the CRWQCB as part of the quarterly reports. Water levels will also be taken prior to purging wells during the sampling procedure.

E. CONCLUSIONS

- 1. Four zones of higher permeability: A vadose zone of higher permeability (VHPZ), the A-aquifer, the B₁-aquifer and the B₂-aquifer exist in the upper 70 feet of section on the median strip of the Central Expressway, approximately 150 feet north of the Jasco site. The VHPZ thins towards the northeast, as it is of minimal thickness in wells V-7 and I-2. The thickness of the A-aquifer decreases towards the west on the median of the Central Expressway. The B₂-aquifer ranges in thickness from 7.5 to 11.2 feet and is fairly uniform in composition in the three boreholes where it has been fully penetrated. The B₂-aquifer is very similar in composition to the B₁-aquifer, in terms of grain-size, color, and water content.
- 2. The vertical coefficients of permeability determined in the laboratory for the higher permeability units range from 5.2×10^{-5} cm/sec for the VHPZ, to 2.3×10^{-4} cm/sec for both the A and B₁-aquifers. Although the permeability values calculated for the A and B₁-aquifers were in the expected range for the types of soils encountered, they are on the low end of the expected range due to the aquifer material containing a relatively high percentage of clay and silt. The vertical permeability values obtained for the VHPZ, the A-aquifer and the B₁-aquifer are of sufficiently low permeability to retard the vertical migration of ground water to deeper aquifers.
- 3. The higher permeability zones are separated by low permeability zones which range in composition from silty clay to clayey sand. Four lower permeability units have been identified, the vadose lower permeability zone, (VLPZ), a lower permeability unit overlying the A-aquifer, the A-B₁ aquitard and the B₁-B₂ aquitard.
- 4. The vertical coefficients of permeability for the lower permeability units ranged from 2.3×10^{-4} cm/sec for the VLPZ, to 3.1×10^{-7} cm/sec for the A-B₁ aquitard, to 2.3×10^{-8} cm/sec for the B₁-B₂ aquitard. The

 $\mathrm{B_{1}^{-}B_{2}}$ aquitard material from I-3, identified as a clayey sand, had a vertical permeability of 2.9×10^{-7} cm/sec, a value typical of aquitard material. All of the lower permeability units with the exception of the VLPZ of both I-2 and I-3 had vertical permeabilities typical of aquitard material. The VLPZ samples had higher vertical permeabilities due to the presence of rootlets and rootlet holes.

- 5. The vertical permeability values obtained for the $A-B_1$ aquitard and the B_1-B_2 aquitard are of sufficiently low permeability to significantly retard the vertical migration of ground water to deeper aquifers.
- 6. The general direction of ground water flow within the A-aquifer in the vicinity of the Jasco site is $N30^{\circ}E$, and the magnitude of gradient is 0.004 ft/ft.
- 7. The general direction of ground water flow within the B_1 -aquifer is N15°E. The magnitude of gradient is 0.003 ft/ft.
- 8. The highest concentrations of purgeable organic compounds were observed in wells V-2 and V-4, wells which have shown a significant reduction in chemical concentration over the past six to ten months. Off-site migration of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE, within the A-aquifer has been documented in A-aquifer wells V-6 and V-7. The northerly extent of chemical migration in the A-aquifer is not well defined; the installation of wells V-8 and V-9 should aid in locating the northerly extent of chemicals in the A-aquifer. The western boundary of chemicals in the A-aquifer lies adjacent to well V-6. The eastern boundary lies between wells V-4 and V-5.
- 9. Low concentrations of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE were identified in B₁-aquifer well I-2 and 1,1,1-TCA, and 1,1-DCA within I-1 during the August round of chemical testing. In the September round, chemicals were not detected in I-2. Low concentrations of both 1,1,1-TCA and 1,1-DCA were also detected in I-1 during the September sampling. Of

the chemical concentrations detected in wells I-1 and I-2, only the 1,1-DCE identified in the August sampling of I-2 was above the DOHS recommended action level; 1,1-DCE was not detected in I-2 during the September sampling. Chemical concentrations were not detected in well I-3 during the August sampling. Phenol, which had not been detected previously in any of the on and off-site monitoring wells, was detected in well I-3 during the September sampling. Future sampling episodes are necessary before an accurate assessment can be made regarding the presence or absence of chemical concentrations within B₁-aquifer wells I-2 and I-3.

10. A substantial reduction in the concentration of methylene chloride, 1,1,1-TCA and 1,1-DCA has been observed over the past 10 months in well V-2 and the past six months in well V-4. The reduction in concentration was induced by ground water extraction from wells V-2 and V-4. A second trend which supports this conclusion is that an increase in the concentration of MCL, TCA, and DCA in V-2, and DCA in V-4, was observed after extraction from V-4 was stopped on August 21, 1987. These data indicate that the ground water extraction from V-4, which continues to this date, has been successful in reducing chemical concentrations within the A-aquifer at the locations where the highest concentrations have been observed.

F. LIMITATIONS

The data, information, interpretations, and conclusions contained within this report are presented specifically and solely for Bronson, Bronson and McKinnon. The conclusions and professional opinions presented herein were developed by Wahler Associates, in accordance with currently accepted geologic and hydrogeologic principles and practices. Wahler Associates cannot be responsible for any conclusions and recommendations that may be made by others, unless we have been given an opportunity to review such conclusions and concur in writing.

TABLE 1

WELL CONSTRUCTION INFORMATION (DEPTHS IN FEET)

Well No.	Aquifer	Boring Depth	Casing Depth	Screened Interval	Sand Pack	Diameter	Installation <u>Date</u>	Drilling <u>Method</u>
I-2	^B 1	59.5	54.5	49.0-54.5	47.0-54.5	2-inch	8/14-18/87	M
1-3	B ₁	71.0	55.0	49.0-55.0	46.5-55.5	2-inch	8/18-20/87	М

Explanation

M - mud rotary

TABLE 2

DEPTH TO GROUND WATER: A AND B, AQUIFER WELLS SEPTEMBER 17, 1987 to OCTOBER 14, 1987

Well Number	Ground Elevation	Reference Elevation	9-17-87	9-23-87	9-29-87	10-7-87
V-1	58.29	58.29	23.49	23.59	23.67	23.71
V-2	57.38	57.38	23.06	23.22	23.23	23.27
V-3	57.60	57.60	22.86	22.89	22.94	23.10
V-4	57.40	58.54	24.22	24.57	24.40	24.47
V-5	58.65	60.14	25.79	25.98	25.95	26.00
V-6	58.10	58.59	24.44	24.49	24.59	24.64
V-7	56.60	56.76	23.05	23.15	23.19	23.22
1-1	58.30	59.22	24.97	25.31	25.15	25.20
1-2	56.80	57.66	23.85	23.89	24.00	24.06
I-3	56.30	57.29	23.55	23.65	23.70	23.77

TABLE 3

GROUND WATER ELEVATIONS: A AND B,-AQUIFER MONITORING WELLS SEPTEMBER 17, 1987 TO OCTOBER 14, 1987

Well No.	9-17-87	9-23-87	9-29-87	10-7-87
V-1	34.80	34.70	34.62	34.58
V-2	34.32	34.16	34.15	34.11
V-3	34.74	34.71	34.66	34.50
V-4	34.32	33.97	34.14	34.07
V-5	34.35	34.16	34.19	34.14
V-6	34.15	34.10	34.00	33.95
V-7	33.71	33.61	33.57	33.54
I-1	34.25	34.11	34.07	34.02
1-2	33.81	33.77	33.66	33.60
I-3	33.74	33.64	33.59	33.52

TABLE 4

SUMMARY OF CHEMICAL ANALYSES PERFORMED

Well No.	Date	Type of Analysis	Matrix	Laboratory	QC Data	Chromatograms
Jasco Tap	8/20/87	EPA 601	Water	S	Y	Y
Water Tank	8/20/87	EPA 601	Water	S	Y	Y
V-1	8/27/87	EPA 601/602+	GW	S	Y	Y
V-1	8/27/87	THC AS P.T.	GW	S	Y	Y
V-1	8/27/87	ALC/ACET	GW	S	Y	Y
V-1	8/27/87	EPA 604	GW	S	Y	Y
V-2	8/27/87	EPA 601/602+	GW	S	Y	Y
V-2	8/27/87	THC AS P.T.	GW	S	Y	Ÿ
V-2	8/27/87	ALC/ACET	GW	S	Ÿ	Ÿ
V-2	8/27/87	EPA 604	GW	S	Y	Ÿ
V- 2	8/27/87	EPA 601/602+	GW	S	Y	Y
V-2	8/27/87	EPA 601/602+	GW	AN	Y	Ÿ
V-3	8/28/87	EPA 601/602+	GW	S	Y	Y
V-3	8/28/87	THC AS P.T.	GW	S	Ÿ	Ÿ
V-3	8/28/87	ALC/ACET	GW	S	Y	Ÿ
V-3	8/28/87	EPA 604	GW	S	Ÿ	Ÿ
V-4	8/27/87	EPA 601/602+	GW	S	Y	Y
V-4	8/27/87	THC AS P.T.	GW	S	Y	Ŷ
V-4	8/27/87	ALC/ACET	GW	S	Y	Ÿ
V-4	8/27/87	EPA 604	GW	S	Y	Ý
V - 5	8/27/87	EPA 601/602+	GW	S	Y	Y
V-5	8/27/87	THC AS P.T.	GW	S	Ŷ	Ÿ
V-5	8/27/87	ALC/ACET	GW	S	Y	Ÿ
V-5	8/27/87	EPA 604	GW	S	Y	Y
V-6	8/27/87	EPA 601/602+	GW	S	Y	Y
V-6	8/27/87	THC AS P.T.	GW	S	Y	Y
V-6	8/27/87	ALC/ACET	GW	S	Y	Ÿ
V-6	8/27/87	EPA 604	GW	S	Y	Y
V-7	8/28/87	EPA 601/602+	GW	S	Y	Y
V-7	8/28/87	THC AS P.T.	GW	S	Ÿ	Y
V-7	8/28/87	ALC/ACET	GW	S	Ÿ	Y
V-7	8/28/87	EPA 604	GW	S	Y	Y

TABLE 4

SUMMARY OF CHEMICAL ANALYSES PERFORMED (Continued)

Well No.	Date	Type of Analysis	Matrix	Laboratory	QC Data	Chromatograms
I-1	8/27/87	EPA 601/602+	GW	S	Y	Y
I-1	8/27/87	THC AS P.T.	GW	S	Ÿ	Ÿ
I-1	8/27/87	ALC/ACET	GW	S	Ÿ	Ÿ
I-1	8/27/87	EPA 604	GW	S	Ÿ	Y
1 1	0/2//0/	LIA 004	GW	3	1	1
1-2	8/28/87	EPA 624 Open	GW	S	Y	Y
1-3	8/28/87	EPA 624 Open	GW	S	Y	Y
Method	8/28/87	EPA 601/602+	DI	S	Y	Y
Field	8/28/87	EPA 601/602+	DI	S	Y	Y
V-1	9/24/87	EPA 601/602+	GW	S	Y	Y
V-1	9/24/87	THC AS P.T.	GW	S	Ÿ	o Ÿ
V-1	9/24/87	ALC/ACET	GW	S	Ÿ	Ÿ
V-1	9/24/87	EPA 604	GW	S	Ÿ	Y
• •	3,2.,0,	B111 004	O.A	Ь	1	
V-2	9/25/87	EPA 601/602+	GW	S	Y	Y
V-2	9/25/87	THC AS P.T.	GW	S	Y	Y
V-2	9/25/87	ALC/ACET	GW	S	Y	Y
V-2	9/25/87	EPA 604	GW	S	Y	Y
V-2	9/25/87	EPA 601/602+	GW	ANR	N	N
V-2	.) 2) 0	LIR 001/0021	Gw	ANK	N	N
V-3	9/25/87	EPA 601/602+	· GW	S	Y	Y
V-3	9/25/87	THC AS P.T.	GW	S	Y	Y
V-3	9/25/87	ALC/ACET	GW	S	Y	Y
V-3	9/25/87	EPA 604	GW	S	. Y	Y
	•					-
V-4	9/25/87	EPA 601/602+	GW	S	Y	Y
V-4	9/25/87	THC AS P.T.	GW	S	Ÿ	Ÿ
V-4	9/25/87	ALC/ACET	GW	S	· Y	Y
V-4	9/25/87	EPA 604	GW	S	Ÿ	Ÿ
V-4	9/25/87	EPA 601/602+	GW	S	Ÿ	Ÿ
V-4	9/25/87	EPA 601/602+	GW	ANR	N	N
	, , , , , ,	-,		*****		1,
V-5	9/24/87	EPA 601/602+	GW	S	Y	Y
V-5	9/24/87	THC AS P.T.	GW	S	Ÿ	Y
V-5	9/24/87	ALC/ACET	GW	S	Ÿ	Ÿ
V-5	9/24/87	EPA 604	GW	S	Y	Y
-	, = ., 5,		011	J		1
V-6	9/24/87	EPA 601/602+	GW	S	Y	Y
V-6	9/24/87	THC AS P.T.	GW	S	Y	Y
V-6	9/24/87	ALC/ACET	GW	S	Y	Y
V-6	9/24/87		GW	S	Y	Y
. •	7,24,0)	DIA 004	. Gw	J	1	1

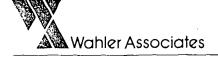


TABLE 4
SUMMARY OF CHEMICAL ANALYSES PERFORMED (Continued)

Well No.	Date	Type of Analysis	Matrix	Laboratory	QC Data	Chromatograms
V-7	9/25/87	EPA 601/602+	GW	S	Y	Y
V-7	9/25/87	THC AS P.T.	GW	S	Y	Y
V-7	9/25/87	ALC/ACET	GW	S	Y	Y
V-7	9/25/87	EPA 604	GW .	S	Y	Y
I-1	9/25/87	EPA 601/602+	GW	S	Y	Y
I-1	9/25/87	THC AS P.T.	GW	S	Y	Y
I-1	9/25/87	ALC/ACET	GW	S	Y	Y
I - 1	9/25/87	EPA 604	GW	S	Y	Y
I-2	9/24/87	EPA 601/602+	GW	S	Y	Y
I-2	9/24/87	THC AS P.T.	GW	S	Y	Y
I-2	9/24/87	ALC/ACET	GW	S	Y	Y
I-2	9/24/87	EPA 604	GW	S	Y	Y
I-3	9/24/87	EPA 601/602+	GW	S Č	Y	Y
I-3	9/24/87	THC AS P.T.	GW	S	Y	Y
I-3	9/24/87	ALC/ACET	GW	S	Y	Y
I-3	9/24/87	EPA 604	GW	S	Y	Y
Field	9/24/87	EPA 601/602+	DI	ANR	N	N
Field	9/25/87	EPA 601/602+	DI	ANR	N	N
Method	9/25/87	EPA 601/602+	DI	ANR	N	N

Explanation

EPA 601/602+ - EPA Methods 601 and 602 plus MEK and xylenes

THC - Total Hydrocarbons

P.T. - Paint Thinner

ALC - Alcohols

ACET - Acetone

EPA 604 - EPA Method 604

EPA 624 Open - EPA Method 624 plus open scan for NBS spectral library compounds

GW - Ground Water

DI - Deionized Water

S - Sequoia Analytical Laboratories

AN - Anametrix Inc.

ANR - Anresco Inc.

Method - Method blank

Field - Field Blank

Y - Yes

N - No

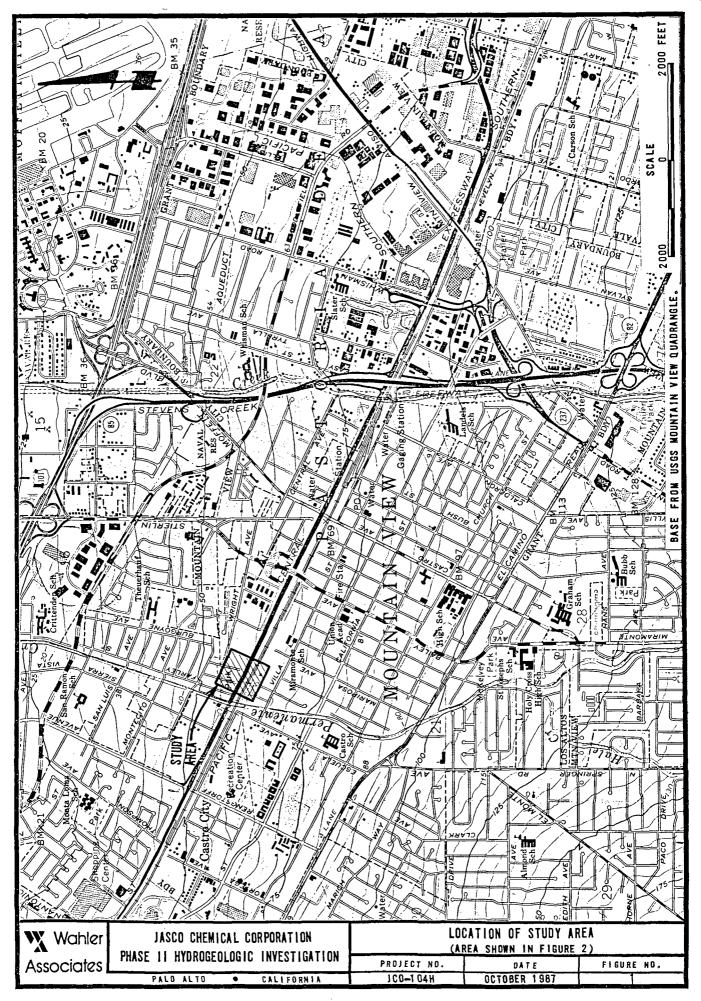
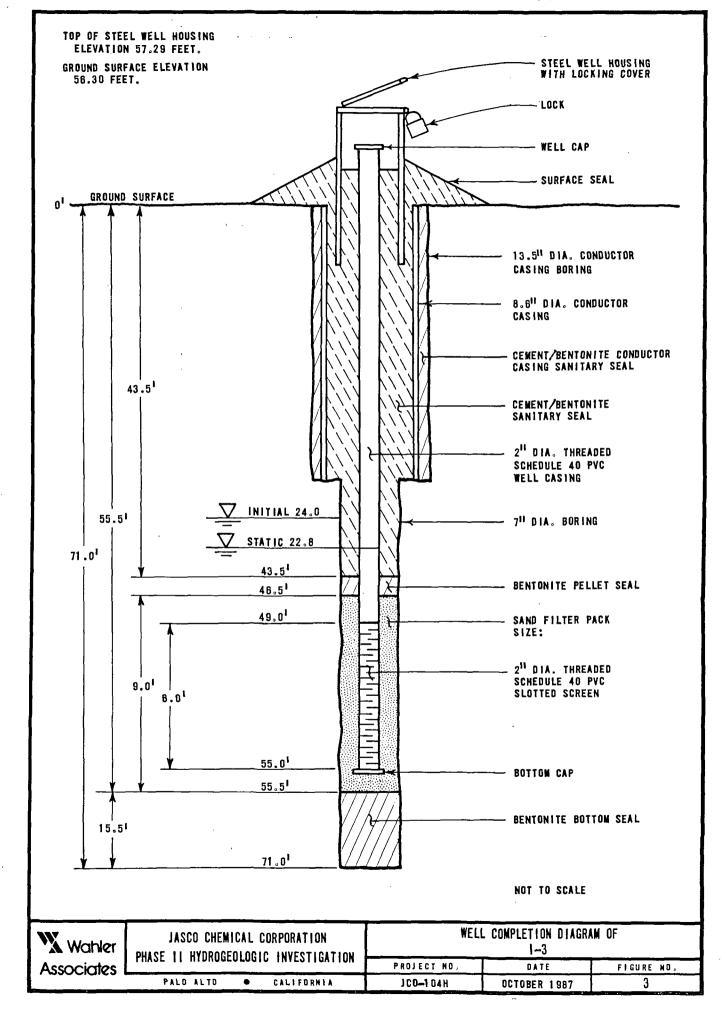
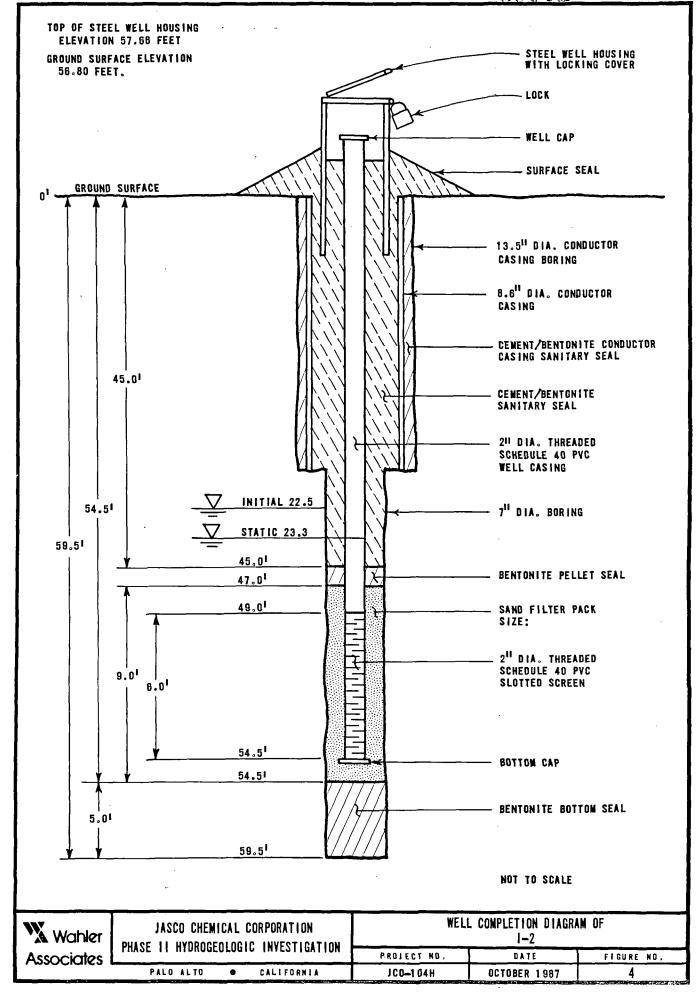
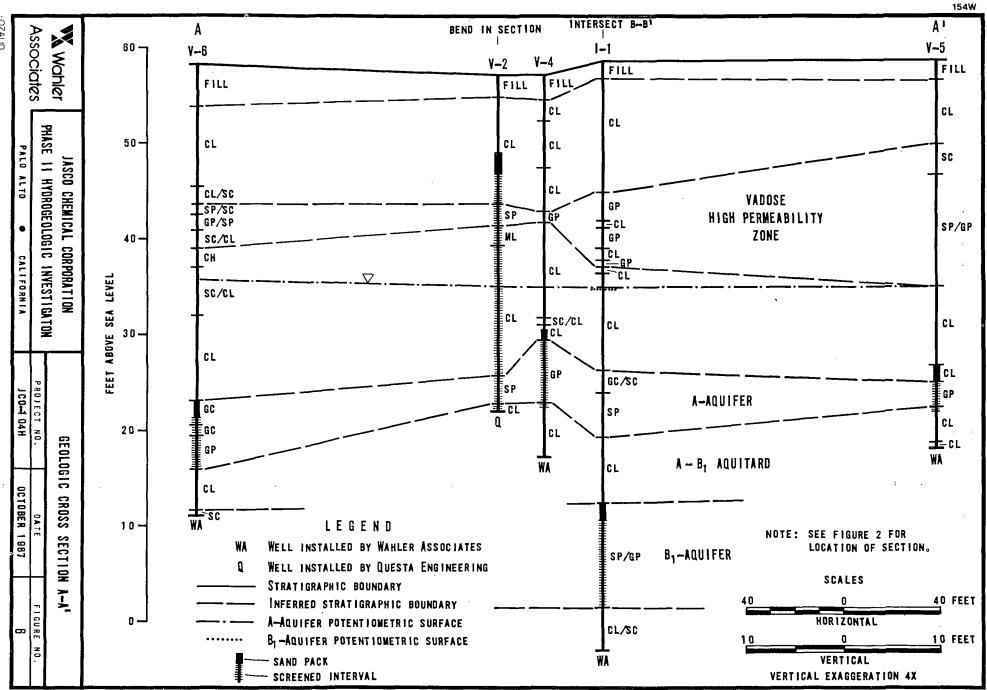


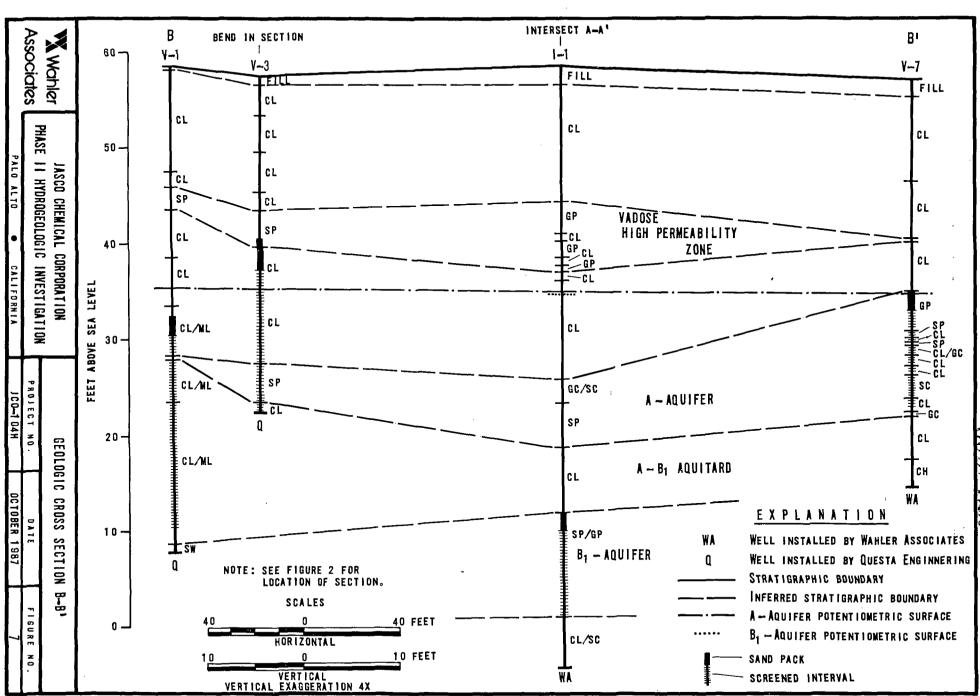
TABLE 5

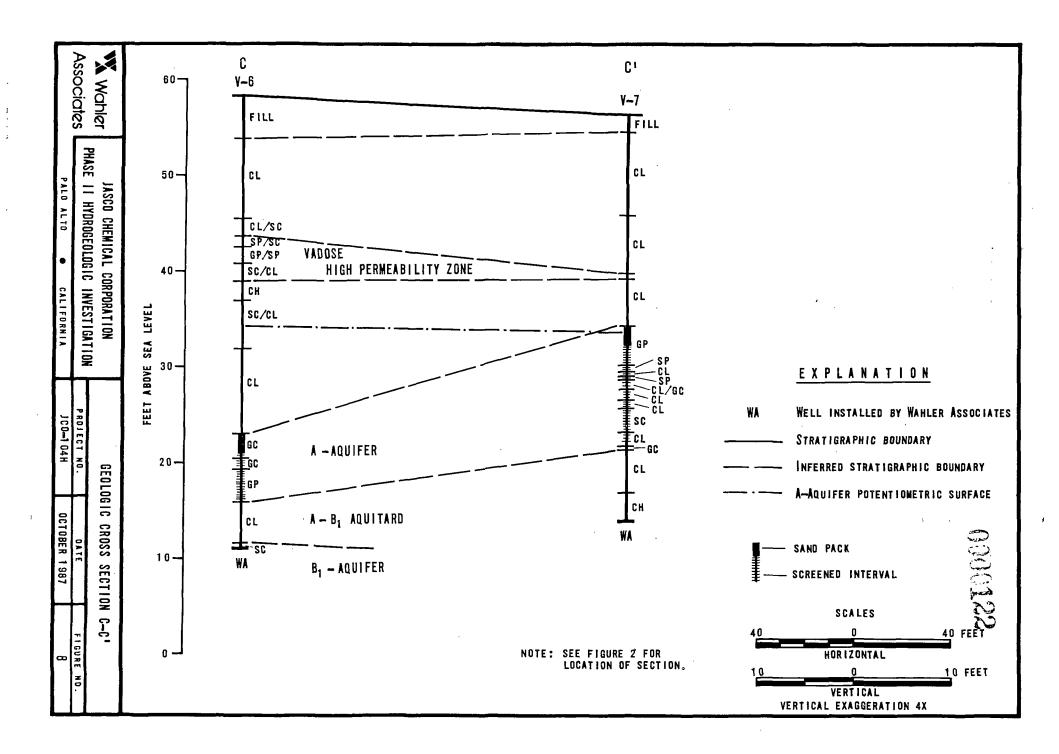

SUMMARY OF CHEMICAL ANALYSIS RESULTS (ppm)

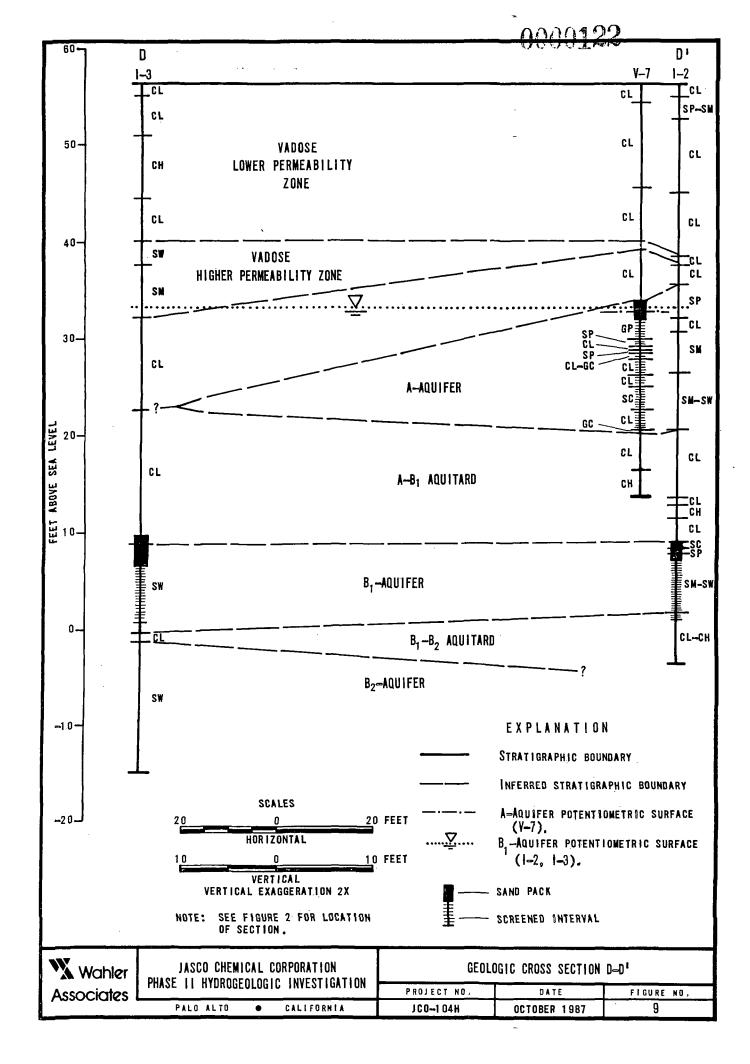

Sampling Location	Date	Lab	Analysis	Bromodem	Chloroform	1,1,1-TCA	1,1-DCA	1,2-DCA	Chloroeth	TCE	1,1-DCE	CIS-1, 2-DCE	TRANS 1,2-DCE
Jasco Tap Water Tank	8/20/87 8/20/87	S S	601 601	0.00071 0.0011	0.071 0.072	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0002) ND(0.0002)	NA NA	ND(0.0005) ND(0.0005)
V-1	8/27/87 9/24/87	s s	a a		ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) 0.0039	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.000@) 0.00058	NA NA	ND(0.0005) 0.0014
V-2	8/27/87 8/27/87 8/27/87 9/25/87 9/25/87	AN S S S ANR	601/602+ a 601/602+ a 601/602+	ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.010)	ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.010)	0.200 0.270 0.250 0.630 0.500	0.630 0.630 0.570 0.490 0.700	ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.010)	D ND(0.050) ND(0.050) ND(0.050) 0.026	D ND(0.050) ND(0.050) ND(0.050) ND(0.010)	D ND(0.050) ND(0.050) ND(0.050) 0.076	D NA NA NA	ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.010)
V-3	8/28/87 9/25/87	s s	a a		ND(0.0005) ND(0.0005)	0.0018 0.0011	0.015 0.0066	0.0010 ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	0.0013 0.00076	NA NA	0.012 0.0091
V-4	8/27/87 9/25/87 9/25/87 9/25/87	S S ANR S	a 601/602+ 601/602+ a	ND(0.005) ND(0.005) ND(0.010) ND(0.005)	ND(0.005) ND(0.005) ND(0.010) ND(0.005)	0.060 0.031 0.020 0.030	0.400 0.300 1.000 0.310	ND(0.005) ND(0.005) 0.008 ND(0.005)	ND(0.005) 0.063 0.059 0.039	ND(0.005) ND(0.005 ND(0.020) ND(0.005)	0.036 0.016 0.028 0.014	NA NA NA NA	ND(0.005) ND(0.005) ND(0.010) ND(0.005)
V-5	8/27/87 9/24/87	S S	a a	, ,	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0002) ND(0.0002)	NA NA	ND(0.0005) ND(0.0005)
V-6	8/28/87 9/24/87	s s	a a		ND(0.0005) ND(0.0005)	0.0025 0.0045	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0002) ND(0.0002)	NA NA	ND(0.0005) ND(0.0005)
V-7	8/28/87 9/25/87	s s	a a		ND(0.0005) ND(0.0005)	0.016 0.023	0.024 0.019	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	0.0019 0.0024	NA NA	ND(0.0005) ND(0.0005)
I-1	8/27/87 9/25/87	s s	a a		ND(0.0005) ND(0.0005)	0.0019 0.002	0.0023 0.003	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0002) ND(0.0002)	NA NA	ND(0.0005) ND(0.0005)
I-2	8/28/87 9/24/87	s s	624 Open a		ND(0.0005) ND(0.0005)	0.0068 ND(0.0005)	0.014 ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	0.0071 ND(0.0002)	NA NA	ND(0.0005) ND(0.0005)
1-3	8/28/87 9/24/87	s s	624 Open a	• • •	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0002) ND(0.0002)	NA NA	ND(0.0005) ND(0.0005)
Method Blank	8/28/87 9/25/87		601/602+ 601/602+	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0002) ND(0.010)	NA NA	ND(0.0005) ND(0.010)
Field Blank	8/28/87 9/24/87 9/25/87	ANR	601/602+ 601/602+ 601/602+	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0002) ND(0.010) ND(0.010)	NA NA NA	ND(0.0005) ND(0.010) ND(0.010)

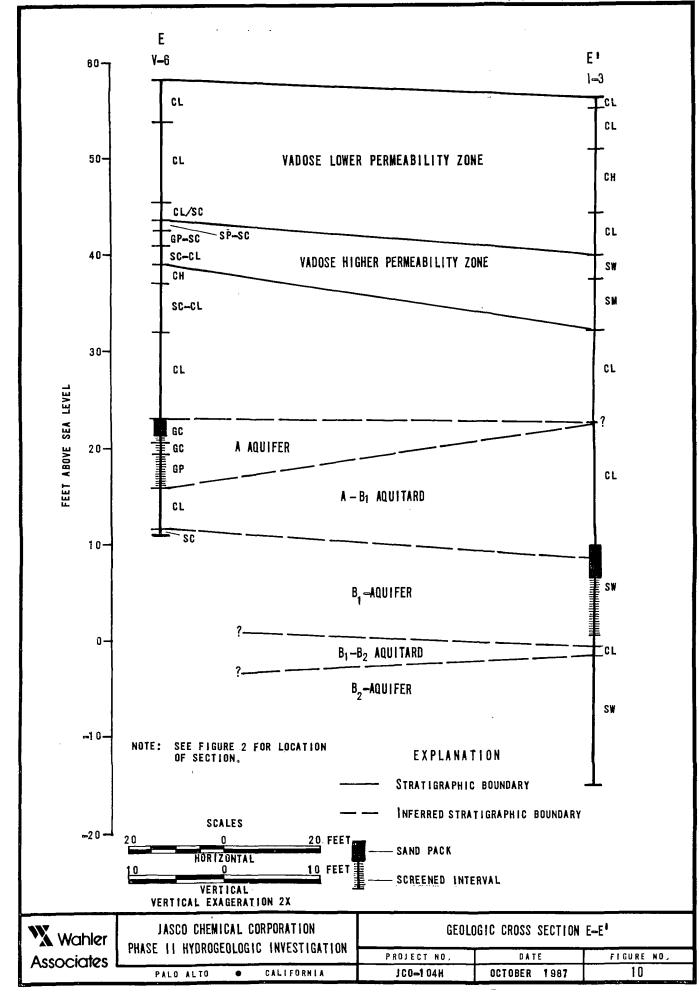
									_				
Sampling Location	Date	Lab	Analysis	ACETONE	MEK	MCL	BENZENE	TOLUENE	XYLENE	СНВ	V.C.	PHENOL	
Jasco Tap Water Tank	8/20/87 8/20/87	S S	601 601	NA NA	NA NA	ND(0.0005) ND(0.0005)	NA NA	NA NA	NA NA	NA NA	ND(0.0005) ND(0.0005)	NA NA	
V-1	8/27/87 9/24/87	s s	a a	ND(0.0005) ND(0.050)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)		ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.001) ND(0.010)	
V-2	8/27/87 8/27/87 8/27/87 9/25/87 9/25/87	s s 6 s	601/602+ a 601/602+ a 601/602+	D ND(1) NA 0.950 NA	D ND(0.050) ND(0.050) ND(0.0005) 0.027	1.700 0.270 0.200 0.220 4.600	0.020 ND(0.050) ND(0.050) ND(0.050) 0.007	0.250 ND(0.050) ND(0.050) ND(0.050) 0.200	0.050 ND(0.050) ND(0.050) 0.026 0.044	ND(0.050) ND(0.050) ND(0.050) ND(0.050) 0.037	ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.010)	NA ND(0.001) NA ND(0.010) NA	
V-3	8/28/87 9/25/87	s s	a a	ND(1) ND(0.050)	ND(0.0005) ND(0.0005)	0.0063 0.012	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	0.0080 ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) 0.00068	ND(0.001) ND(0.010)	
V-4	8/27/87 9/25/87 9/25/87 9/25/87		a 601/602+ 601/602+ a	ND(1) NA NA ND(0.050)	ND(0.005) ND(0.0005) ND(0.010) ND(0.005)	ND(0.005) ND(0.005) 0.003 ND(0.005)	ND(0.005) ND(0.005) ND(0.010) ND(0.005)	ND(0.005) ND(0.005) 0.017 ND(0.005)	ND(0.005) ND(0.005) ND(0.010) ND(0.005)	ND(0.005) ND(0.005) 0.008 ND(0.005)	ND(0.005) ND(0.005) ND(0.010) ND(0.005)	ND(0.001) NA NA ND(0.010)	
V-5	8/27/87 9/24/87	s s	a a	ND(1) ND(0.050)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.001) ND(0.010)	
V-6	8/28/87 9/24/87	s s	a a	ND(1) ND(0.050)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) 0.0019	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.001) ND(0.010)	
V-7	8/28/87 9/25/87	s s	a a	ND(1) ND(0.050)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.001) ND(0.010)	
I-1	8/27/87 9/25/87	s s	a a	ND(1) ND(0.050)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.001) ND(0.010)	
1-2	8/28/87 9/24/87	s 6 s	24 Open a	ND(0.010) ND(0.0050)	ND(0.010) ND(0.0005)	ND(0.010) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.010) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.010) ND(0.010)	
1-3	8/28/87 9/24/87	s 6 s	24 Open a	ND(0.010) ND(0.050)	ND(0.010) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.005) ND(0.0005)	ND(0.010) ND(0.0005)	ND(0.005) ND(0.0005)	ND(0.0005) ND(0.0005)	ND(0.010) 0.020	
Method Blank	8/28/87 9/25/87		01/602+ 01/602+	na na	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	ND(0.0005) ND(0.010)	NA NA	بر درگار
Field Blank	8/28/87 9/24/87 9/25/87	ANR 6	01/602+ 01/602+ 01/602+	NA NA NA	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	ND(0.0005) ND(0.010) ND(0.010)	NA NA NA	
Explanation													7
BROMODCM CHLORETH MCL CHB	- C	hloroe	ne Chloride			R 1/602+ 4 Open	EPA MetlIncludes	nods 601 and nod 624, plu s 601/602+,	s open scan f	or NBS spectr 4, total hydr	K and Xylenes al library com ocarbons as	pounds	4
V.C. S AN	- Ş	equoia	hloride Analytical ix Inc.	. Laboratory	ND NA D	(0.0005)	- Compound	d not detect d not analyz	ed at detecti ed.	one. on limit of Orrument detect			

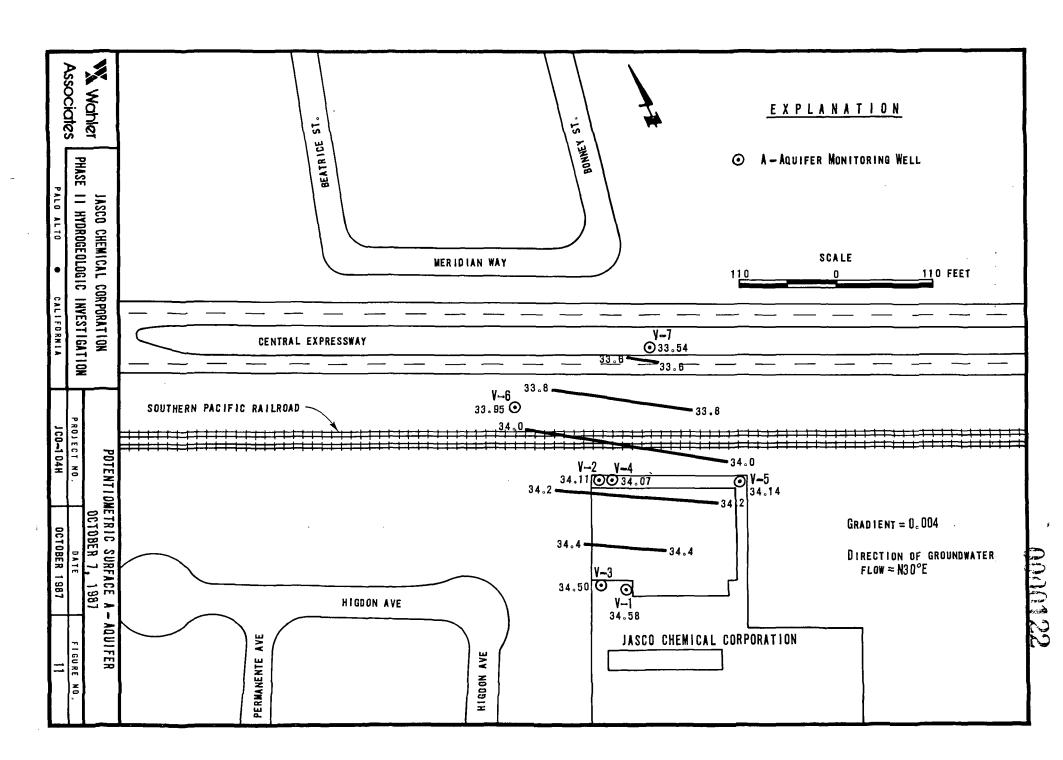


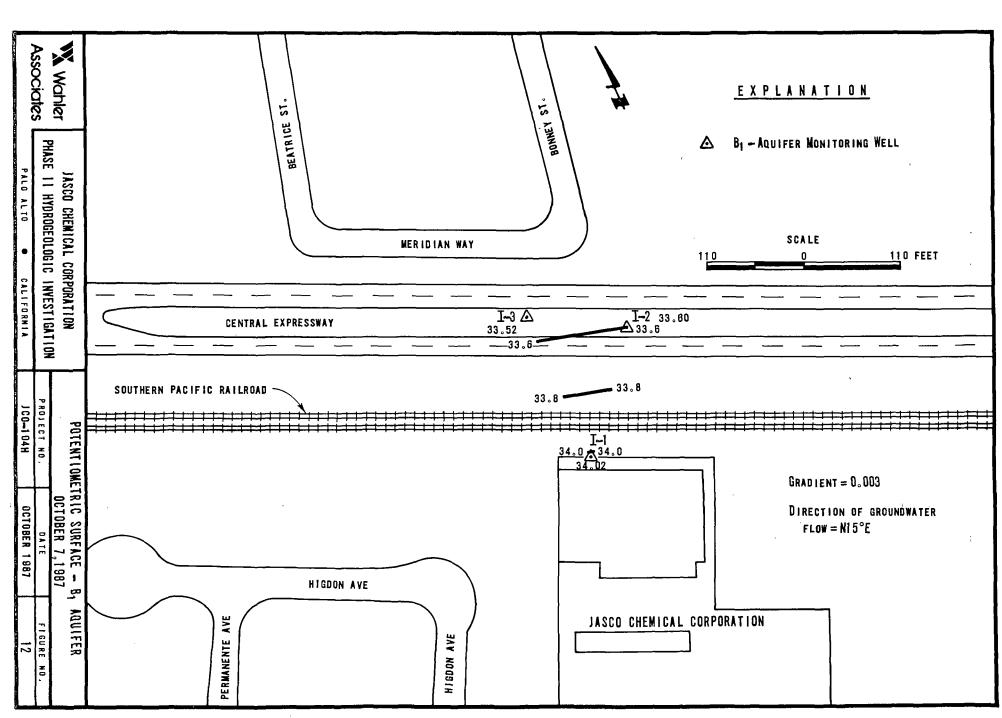

0000122

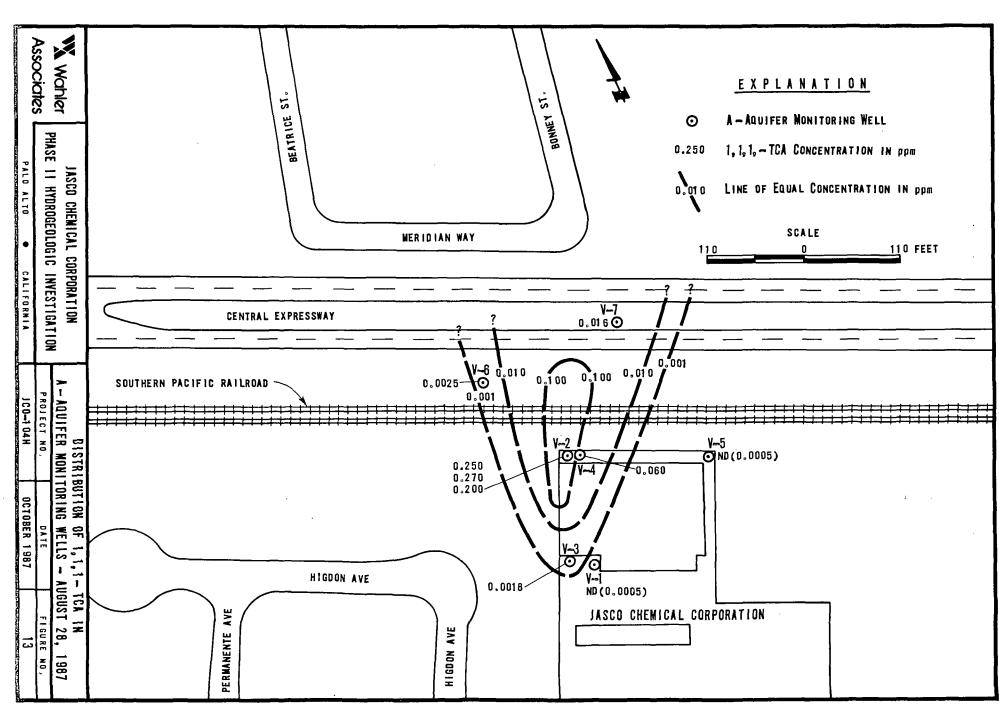


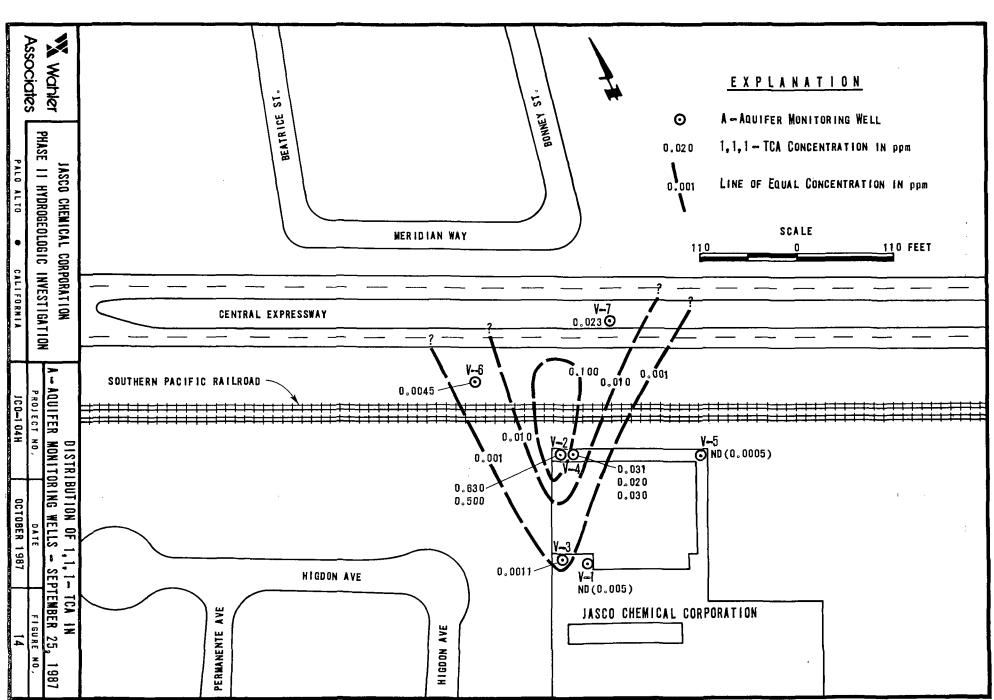


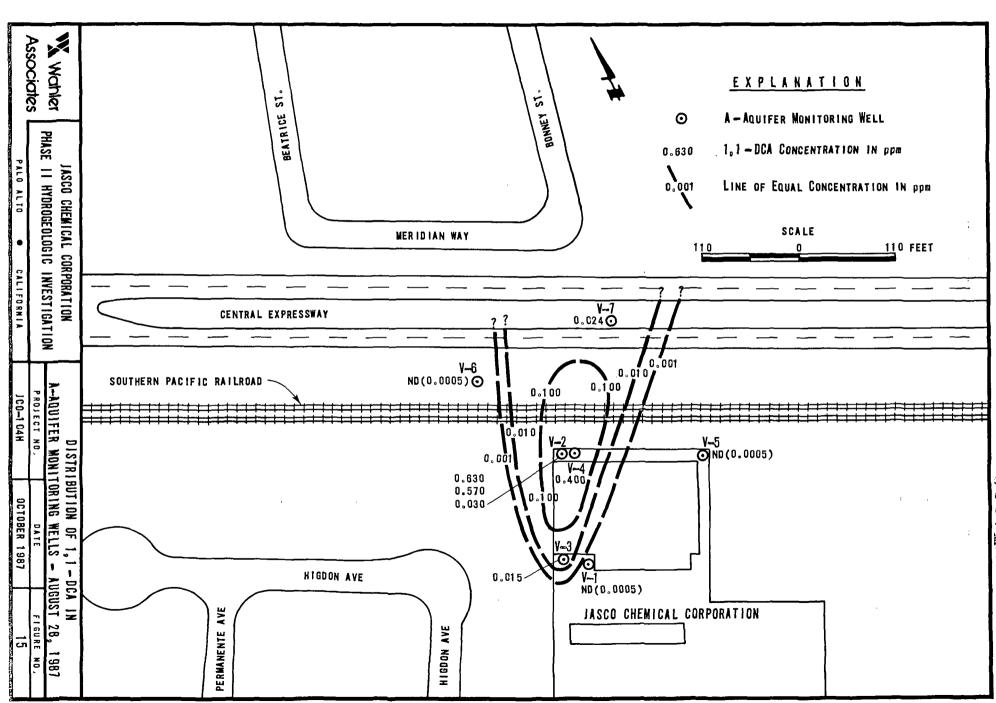

		· .			ANIELED 20	IIL UL/	ISSIFICATION SYST	EM (AST	M D-2487)			
PR	LMA	RY	DIV	1810	INS	GROUP Symbol		SECOND	ARY DIVISIO	NS		
		<u>.</u>	× :	#	CLEAN	GW	WELL GRADED GRA	VELS, GR	AVEL-SAND MIXT	URES, LI	TTLE	OR NO
IALS	2	THAN HAL	1131	_	GRAVELS (LESS THAN	GP	FINES. POORLY GRADED G	RAVELS O	R GRAVEL-SAND	MIXTURES	, LI1	TTLE OR
SOILS MATERIAL #200	GRAVELS	HAN	. E ~	THAN	5% FINES)	}	NO FINES.	GRAVEL-S	AND-SILT MIXTU	RE. NON	PLAS	STIC
	8	MORE	CDARSE FRACTION	RGER	GRAVEL WITH	GM	FINES.					
	<u> </u>				FINES	GC	CLAYEY GRAVELS.	GRAVEL-	SAND-CLAY MIXTO	URES. P	LASTI	C FINES
– = :.		AL F	<u> </u>	* * Z	CLEAN SANDS	SW	WELL GRADED SAN	DS, GRAV	ELLY SANDS, LI	TTLE OR	NO F	INES.
COARSE MORE THAN IS LAR	SANDS	THAN HALF	FRACTION	R THAN I E V E	(LESS THAN 5% FINES)	SP	POORLY GRADED S	ANDS OR	GRAVELLY SANDS	, LITTLE	OR M	NO FINE
CO RE 1	SA		SE	_ ~	SANDS	SM	SILTY SANDS, SA	ND-SILT	MIXTURES. NON	_PLASTIC	FINE	s.
2		MORE	COARSE	SMAL	WITH FINES	SC	CLAYEY SANDS, S.	AND-CLAY	MIXTURES. PL	ASTIC FI	NES.	
	\dagger				L	ML	INORGANIC SILTS					
DILS Material #200		بة م	ΥS	2	LIMIT IS LESS THAN 50	CL	HORGANIC CLAYS		TO MEDIUM PLAS			
SDILS F MATE An #20 Ze		SILTS	CLAYS	-	L I L				ILTY CLAYS, LE			
ED SC OF N THAN	<u> </u>					OL	ORGANIC SILTS A					
GRAINED HALF O LLER TH		66 (2)	õ	9	1.T A TER 50	MH	SILTY SOILS.					
		SILTS	CLAYS		LIMIT GREATE HAN 50	CH	INORGANIC CLAYS	DF HIGH	PLASTICITY, F	AT CLAYS		
FII E 1		S			s =	OH	ORGANIC CLAYS O	F MEDIUM	TO HIGH PLAST	ICITY, O	RGANI	IC SILT
₹ 0		HIGH	LY OR	G A N I	C SDILS	PT	PEAT AND OTHER	HIGHLY O	RGANIC SOILS.			
						DEFI	NITION OF TERM	S				
							GRAIN SIZES					
					U.S. STANDA	ARD SER	IES SIEVE					
			2 UN				18	ı	3/A ^{II}	311	81	1
SILTS & CLAYS		TIN-	200	_	50	SAND	16	-	3/4 ^{II} GRAVEL	3"	- 6 ¹	
SILTS & CLAYS GUISHED ON BAS PLASTICITY		TIN-		FIN	50	SAND MEDIUM	16 COARSE	FINE	GRAVEL	COBBLI	Ť	
GUISHED ON BAS		TIN-		_	50 E	MEDIUM		FINE	COARSE	Ī	Ť	
GUISHED ON BAS	SIS	TIN- OF		N	50 E	MEDIUM DND IT I	COARSE ON (INCREASING MO	FINE	COARSE	Ī	ES	BONTDE
GUISHED ON BAS Plasticity Dry	S IS	TIN- OF		N	50 E IOISTURE CO	MEDIUM DND 1 T 1	COARSE ON (INCREASING MO MOIST KEY	FINE	GRAVEL COARSE NY MOIST	COBBLI	TURAT	BOULDE
GUISHED ON BAS PLASTICITY DRY SAMPLE NUM	S I S SL BER	TIN- OF		N	50 E IOISTURE CO	MEDIUM DND 1 T 1	COARSE ON (INCREASING MO	FINE	GRAVEL COARSE RY MOIST PENETRATI	COBBLI	TURAT	BOULDE
GUISHED ON BAS PLASTICITY DRY SAMPLE NUM	S I S SL BER	TIN- OF	LY DAI	MP OF	50 E IOISTURE CO	OND IT I	COARSE ON (INCREASING MO MOIST KEY RECOVERY RECOVERY	FINE ISTURE — VEF	GRAVEL COARSE PENETRATI (RECORDED	COBBLI	STANO	BOULDE
GUISHED ON BAS PLASTICITY DRY SAMPLE NUM	SIS SL BER NER:	TIN- OF	TLY DAI	MP OF	E DAMP MODE ADVANCING	MEDIUM ONDITIO (PL) HOLE:	COARSE ON (INCREASING MO MOIST KEY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY	FINE	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE	WET (SA (LL ON RESI AS BLOW S & GRA	STANGS VELS	BOULDE TED) CE (PR 5 FOOT)
DRY SAMPLE NUM SAMPLE CONTAI BAG	SIS SL BER NER:	IGH1	METHOD DRILL	MP O OF	E DAMP IOISTURE CO DAMP MODE ADVANCING	(PL)	COARSE ON (INCREASING MO MOIST KEY RECOVERY RECOVERY	FINE VEF	COARSE COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE	WET (SA (LL ON RESI AS BLOW S & GRA	STANGS VELS	BOULDE TED) CE (PR 5 FOOT) OWS/FOOT
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR	SL SL BER NER:	IGH1	METHOD DRILL FLIG	MP OF	50 E DAMP DAMP MODE ADVANCING AUGER	(PL) HOLE:	COARSE ON (INCREASING MO MOIST KEY RECOVERY RECOVERY RECOVERY RATIO IN BY A FRACTION: 1.2 FOOTAGE REC	FINE VEF	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE	WET (SA (LL ON RESI AS BLOW S & GRA	STANI STANI S/0.5 VELS	BOULDE TED) CE (PR 5 FOOT)
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE.	SL S	TIN-OF	METHOD DRILL FLIG BUCK SPIN	MP OF	E DAMP IOISTURE CO DAMP MODE ADVANCING	(PL) HOLE: AD SD	COARSE ON (INCREASING MO MOIST KEY RECOVERY RECOVERY RECOVERY RECOVERY A FRACTION: 1.2 = FOOTAGE REC FOOTAGE SAM REMARKS INCLUDES DRILLING	FINE VEF DICATED OVERED PLED	COARSE COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE	WET (SA (LL ON RESI AS BLOW S & GRA	STANIS VELS	BOULDE TED) CE (PR 5 FOOT) O-4 4-10 10-30 30-50
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR	SL S	TIN-OF	METHOD DRILL FLIG BUCK SPIN HOLL	NMP O OF	E DAMP IOISTURE CO MODE ADVANCING AUGER GER	(PL) HOLE: AD SD	COARSE ON (INCREASING MO MOIST KEY RECOVERY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE REC FOOTAGE SAM REMARKS	FINE VEF DICATED OVERED PLED	PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE	WET (SA (LL ON RESI AS BLOW S & GRA INSITY	STANOS DE BLO	BOULDE TED) CE (PR 5 FOOT) WS/FOO 0-4 4-10 10-30
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE	SL S	TIN-OF	METHOD DRILL FLIG BUCK SPIN HOLL ROTA	NMP O OF HHT / EET / EAU S	MODE ADVANCING AUGER STEM AUGER.	HOLE: AD SD HA	COARSE ON (INCREASING MO MOIST KEY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE REC FOOTAGE SAM REMARKS INCLUDES DRILLING FORMATION, E.G. W	FINE VEF DICATED OVERED PLED IN - ATER	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE C	WET (SA (LL ON RESI AS BLOW S & GRA	STANG SYELS BLO	BOULDE TED) CE (PR 5 FOOT) 0-4 4-10 10-30 30-50 VER 50
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD	SL S	TIN-OF	METHOD DRILL FLIG BUCK SPIN HOLL ROTA	NMP OF HT // ET // OW : RY [MODE ADVANCING AUGER STEM AUGER.	HOLE: AD SD HA	COARSE ON (INCREASING MO MOIST KEY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE REC FOOTAGE SAM REMARKS INCLUDES DRILLING FORMATION, E.G. W LEYEL, DATES. REFUSAL: STOPPED MATERIAL TOO HARD	FINE VEF DICATED OVERED PLED IN - ATER	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE C	WET (SA (LL ON RESI AS BLOW S & GRA INSITY E	STANGS / O. STANGS	BOULDE TED) CE (PR 5 FOOT) O-4 4-10 10-30 30-50 VER 50
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST:	SL S	TIN-OF	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL	NMP O OF ET / ET / RY (E T (MODE ADVANCING AUGER STEM AUGER.	HOLE: AD SD HA CT	COARSE ON (INCREASING MO MOIST KEY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE REC FOOTAGE SAM REMARKS INCLUDES DRILLING FORMATION, E.G. WALLENDER, DATES, REFUSAL: STOPPED MATERIAL TOO HARD EQUIPMENT.	FINE VEF DICATED OVERED PLED IN - ATER BY FOR	CONSISTENCY VERY SOFT	WET (SA (LL ON RESI AS BLOW S & GRA NSITY E LAYS & S	STANGS OF BLOOMS	BOULDE TED) CE (PR 5 FOOT) WS/FOO 0-4 4-10 10-30 30-50 VER 50 STRENG 0-3
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD	SL S	TIN-OF	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL SAMPL	NMP OF HT // ET // OW : E TO ER TO	DAMP MODE ADVANCING AUGER STEM AUGER DRILL	HOLE: AD SD HA RD CT	COARSE ON (INCREASING MO MOIST KEY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE REC FOOTAGE SAM REMARKS INCLUDES DRILLING FORMATION, E.G. W LEYEL, DATES. REFUSAL: STOPPED MATERIAL TOO HARD	FINE FINE VEF DICATED OVERED PLED IN- ATER BY FOR	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM	WET (SA (LL ON RESI AS BLOW S & GRA NSITY E LAYS & S BLOWS/F 0-2 4-6	STANG SYELS BLO GILTS FOOT*	BOULDE TED) CE (PR 5 FOOT) O-4 4-10 10-30 30-50 VER 50 STRENG 0-4 4-1
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD	SL S	TIN-OF	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL SAMPL DRIV	NMP OF HHT / EET / OW S RY [EER EER HER	MODE AUGER STEM AUGER. DRILL	HOLE: AD BA BA RO CT	COARSE COARSE	FINE VEF DICATED OVERED PLED IN- ATER BY FOR ICLENT NED.	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM STIFF	WET (SA (LL) ON RESI AS BLOWS & GRA INSITY E LAYS & S BLOWS /F 0-2 4-8 8-1	STANGS ON BLO	BOULDE TED) CE (PR 5 FOOT) WS/FOOT 0-4 4-10 10-30 30-50 YER 50 STRENG 0-2 2-1 1-2
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD	SL S	TIN-OF	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL DRIV PITC CORE	NMP O OF HHT // EET // EET // EET // RY [E ER ER ER HER	MODE ADVANCING AUGER STEM AUGER DRILL BARREL	HOLE: AD SD HA CT	COARSE COARSE COARSE COARSE COARSE COARSE COARSE COARSE COARSE RECOVERY RECOVERY RE	FINE STURE — VEF DICATED OVERED PLED IN - ATER BY FOR ICLENT NED. ED ULTIES	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF	WET (SA (LL ON RESI AS BLOWS & GRA NSITY	STANIS / O. 5 VELS BLOOT*	BOULDE TED) CE (PR 5 F00T) 0-4 4-10 10-30 30-50 VER 50 STRENG 0-4 4-1 1-2 2-4
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD PENETRATION.	SL S	TIN-OF IGHT	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL DRIV PITC CORE PUSH	NMP OF OF OW S RY (EER EER EER 140	MODE ADVANCING AUGER STEM AUGER DOL BARREL	HOLE: AD BA BA RO CT DR PB	COARSE COARSE	FINE STURE — VER DICATED OVERED PLED IN - ATER BY FOR ICLENT NED. ED ULTIES	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE VERY DENSE CCONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD	WET (SA (LL ON RESI AS BLOWS & GRA NSITY E LAYS & S BLOWS/F 0-2 4-8 8-1 15-3 OVER	STANG STANG S/O.5 VELS BLO GILTS FOOT*	BOULDE TED) CE (PR 5 F00T) 0-4 4-10 10-30 30-50 YER 50 STRENG 0-3 4-1 1-2 2-4 0VER
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD PENETRATION.	SL S	TIN-OF IGHT	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL DRIV PITC CORE PUSH	NMP O OF HHT // EET // OW S RY II ER HER HER	MODE AUGER STEM AUGER. ORILL POUND hamme (ASTM-1586	HOLE: AD BA SD HA CT DR CT	COARSE ON (INCREASING MO MOIST KEY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE RECOVERY INCLUDES DRILLING FORMATION, E.G. WENTER ALE STOPPED MATERIAL TOO HARD EQUIPMENT. TERMINATED: SUFFINFORMATION OBTAIN ABANDONED: STOPPED BECAUSE OF DIFFIC EXPLAINED ON LOG. ing 30 inches to drd penetration tes	FINE ISTURE — VEF DICATED OVERED PLED IN- ATER BY FOR ICLENT NED. ED ULTIES rive a 2 t).	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE CCONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD Inch O.D. (1-	WET (SA (LL ON RESI AS BLOWS & GRA NSITY E LAYS & S BLOWS/F 0-2 4-8 8-1 15-3 OVER	STANG STANG S/O.5 VELS BLO GILTS FOOT*	BOULDE TED) CE (PR 5 F00T) 0-4 4-10 10-30 30-50 YER 50 STRENG 0-3 4-1 1-2 2-4 0VER
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD PENETRATION. * Number Spli † Unconfi	SLS SL BER NER: Of t-Ba ned	TIN-OF IGHT	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL DRIV PITC CORE PUSH	NMP O OF HHT // EET // OW S RY II ER HER HER	MODE ADVANCING AUGER STEM AUGER DOL BARREL pound hamme (ASTM-1586 strength in	HOLE: AD BA SD HA CT DR PB C P	COARSE COARSE COARSE COARSE COMMOIST KEY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE RECOVERY REMARKS INCLUDES DRILLING FORMATION, E.G. WELL, DATES, REPUBBLE, STOPPED MATERIAL TOO HARD EQUIPMENT. TERMINATED: SUFFINFORMATION OBTAIN ABANDONED: STOPPED ECAUSE OF DIFFIC EXPLAINED ON LOG. Ing 30 inches to drd penetration tessed ft. Read from a	FINE ISTURE — VEF DICATED OVERED PLED IN- ATER BY FOR ICLENT NED. ED ULTIES rive a 2 t).	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD Inch O.D. (1-	WET (SA (LL) ON RESI AS BLOW S & GRA NSITY E LAYS & S BLOWS/F 0-2 2-4 8-1 15-3 OVER 3/8 inch	STANUS / O. 5 VELS BLO O. 5 STANUS / O. 5 VELS BLO O. 5 STANUS / O. 5 VELS BLO O. 5 STANUS / O. 5 ST	BOULDE TED) CE (PR 5 F00T) 0-4 4-10 10-30 30-50 YER 50 STRENG 0-3 4-1 1-2 2-4 0VER
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD PENETRATION.	SLS SL BER NER: Of t-Ba ned	TIN-OF IGHT	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL DRIV PITC CORE PUSH	NMP O OF HHT // EET // OW S RY II ER HER HER	MODE AUGER STEM AUGER. ORILL POUND hamme (ASTM-1586	HOLE: AD BA SD HA CT DR PB C P	COARSE COARSE COARSE COARSE COMMOIST KEY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE RECOVERY REMARKS INCLUDES DRILLING FORMATION, E.G. WELL, DATES, REPUBBLE, STOPPED MATERIAL TOO HARD EQUIPMENT. TERMINATED: SUFFINFORMATION OBTAIN ABANDONED: STOPPED ECAUSE OF DIFFIC EXPLAINED ON LOG. Ing 30 inches to drd penetration tessed ft. Read from a	FINE ISTURE — VEF DICATED OVERED PLED IN- ATER BY FOR ICLENT NED. ED ULTIES rive a 2 t).	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD Inch O.D. (1-	WET (SA (LL) ON RESI AS BLOW S & GRA NSITY E LAYS & S BLOWS/F 0-2 2-4 8-1 15-3 0VER 3/8 inch	STAN(S > 0.5 VELS BLO SILTS = 0.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	BOULDE TED) CE (PR 5 FOOT) WS/FOOT 0-4 4-10 10-30 30-50 VER 50 STRENG 0-% 4-1 1-2 2-4 OVER
DRY SAMPLE NUM SAMPLE CONTAI BAG JAR SHELBY TUBE. ORIVE SAMPLE RINGS FIELD TEST: STANDARD PENETRATION. * Number Spli † Unconfi	SIS SL BER NER: Of t-Ba ned	TIN-OF IGHT	METHOD DRILL FLIG BUCK SPIN HOLL ROTA CABL DRIV PITC CORE PUSH IS of	MP O OF HHT // EET // OW S EE TO ER HER HER 140 ler ive	MODE AUGER STEM AUGER. OOL POUND hamme (ASTM-1586 strength in IASCO CHEM	HOLE: HOLE: BA BA CT CT DR PB CC P CT CT CT CT CT CT CT CT C	COARSE COARSE COARSE COARSE COMMOIST KEY RECOVERY RATIO IN BY A FRACTION: 1.2 = FOOTAGE RECOVERY REMARKS INCLUDES DRILLING FORMATION, E.G. WELL, DATES, REPUBBLE, STOPPED MATERIAL TOO HARD EQUIPMENT. TERMINATED: SUFFINFORMATION OBTAIN ABANDONED: STOPPED ECAUSE OF DIFFIC EXPLAINED ON LOG. Ing 30 inches to drd penetration tessed ft. Read from a	FINE ISTURE — VEF DICATED OVERED PLED IN- ATER BY FOR ICLENT NED. ED ULTIES rive a 2 t). a pocket	GRAVEL COARSE PENETRATI (RECORDED SAND RELATIVE DE VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD Inch O.D. (1-	WET (SA (LL ON RESI AS BLOW S & GRA INSITY E LAYS & S BLOWS /F 0-2 4-6 8-1 15-3 OVER 3/8 inch	STANGS / O. STANGS	BOULDE! TED) CE (PR) 5 FOOT) O-4 4-10 10-30 30-50 VER 50 STRENG: 4-2 2-4 OVER .)

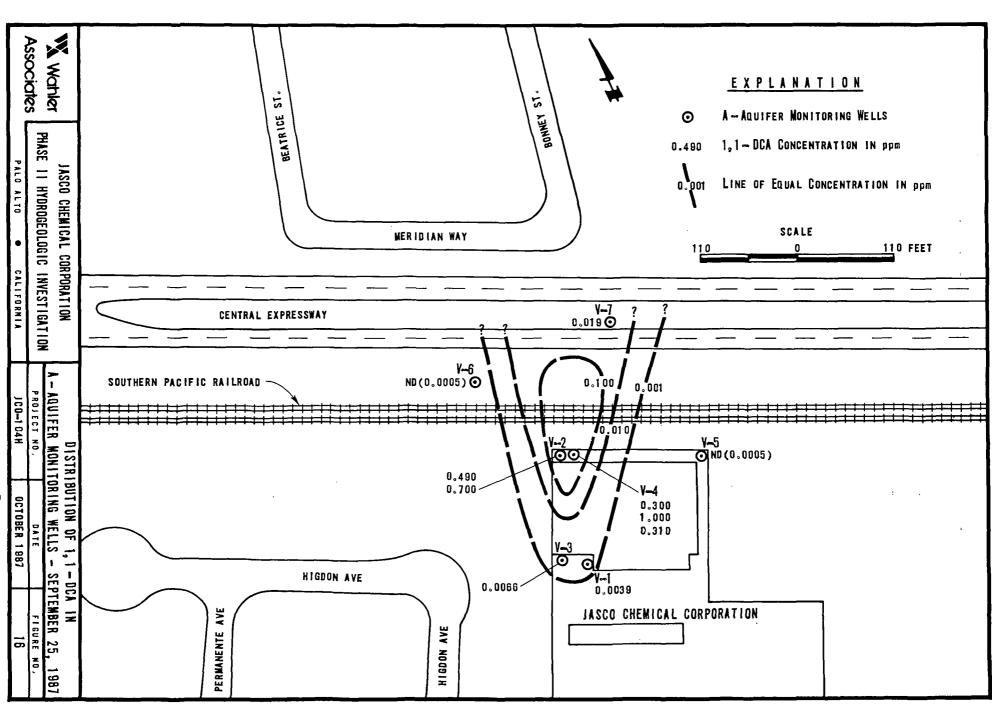


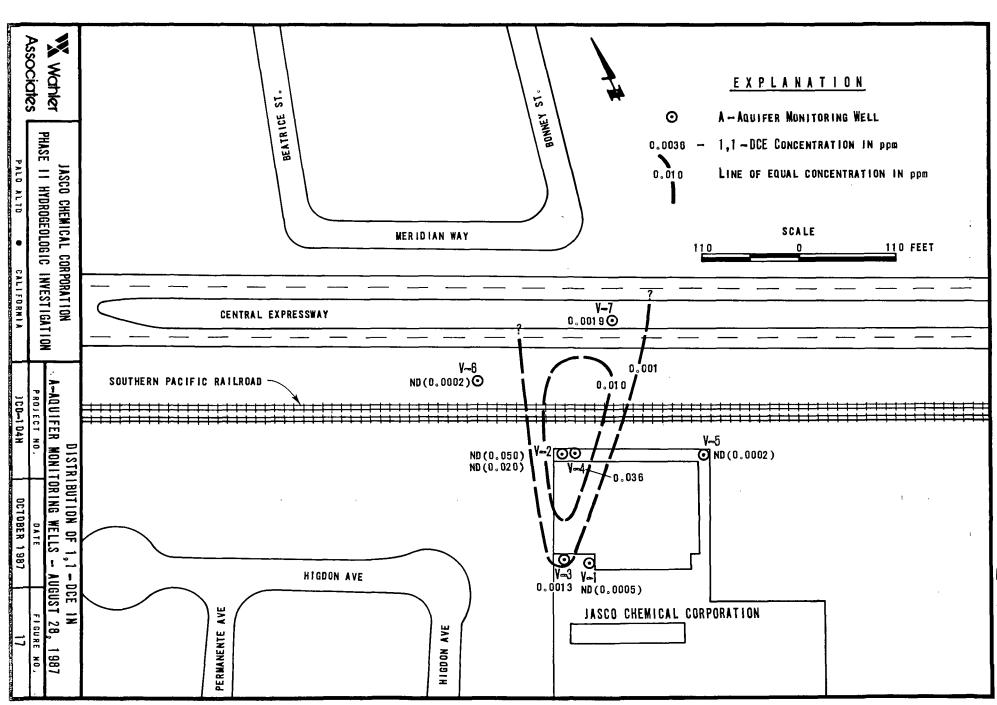


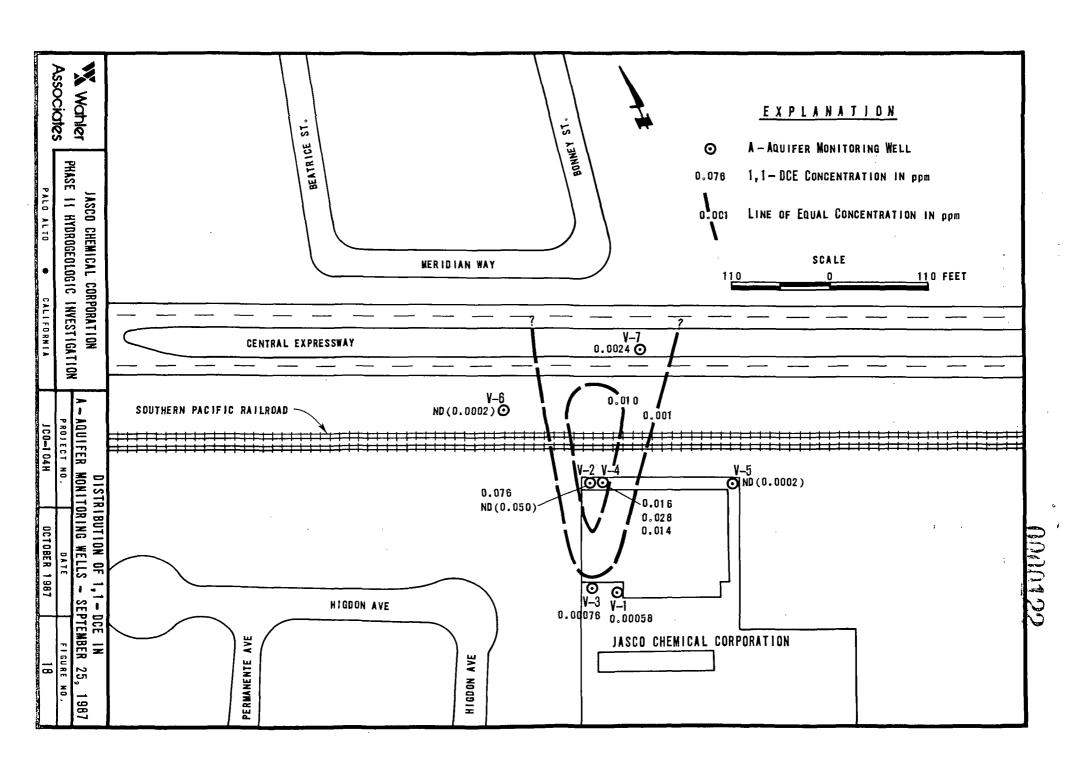


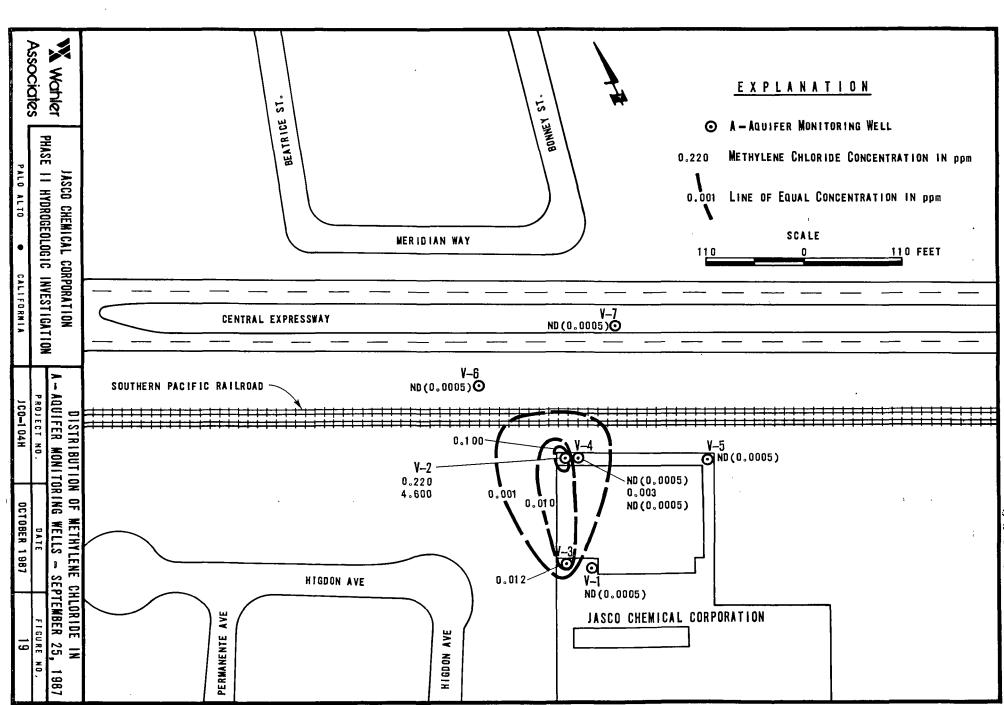


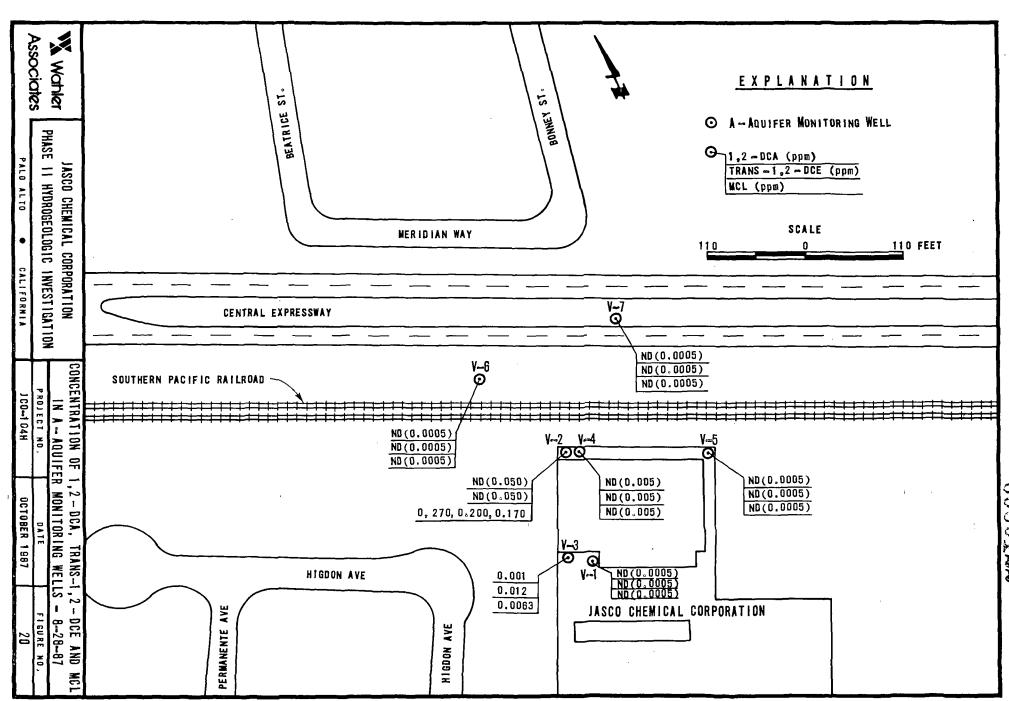


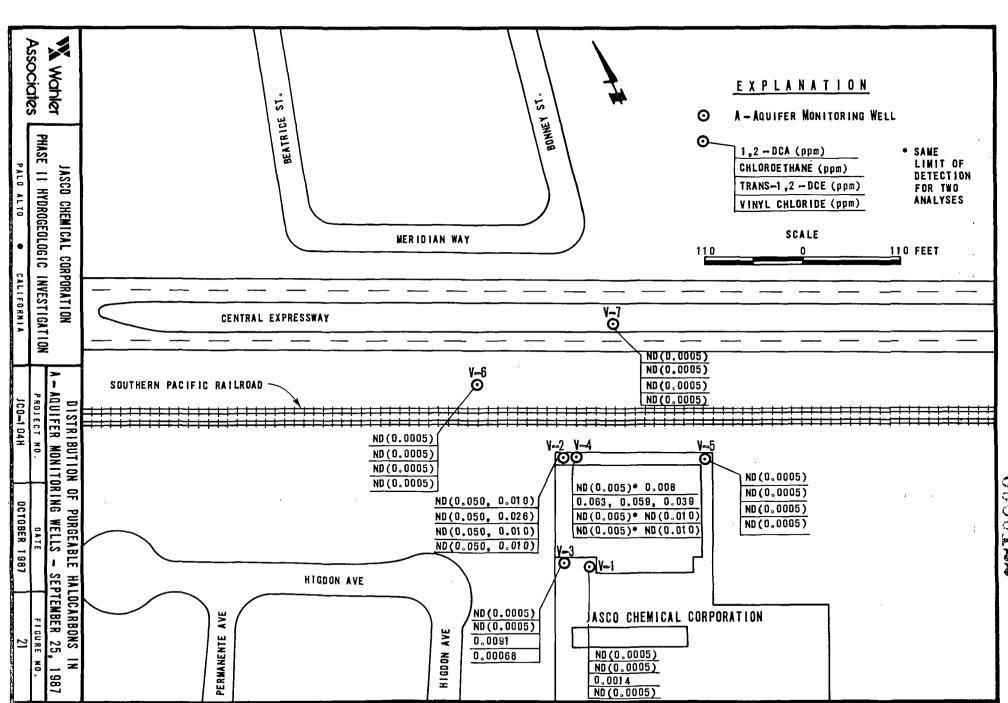


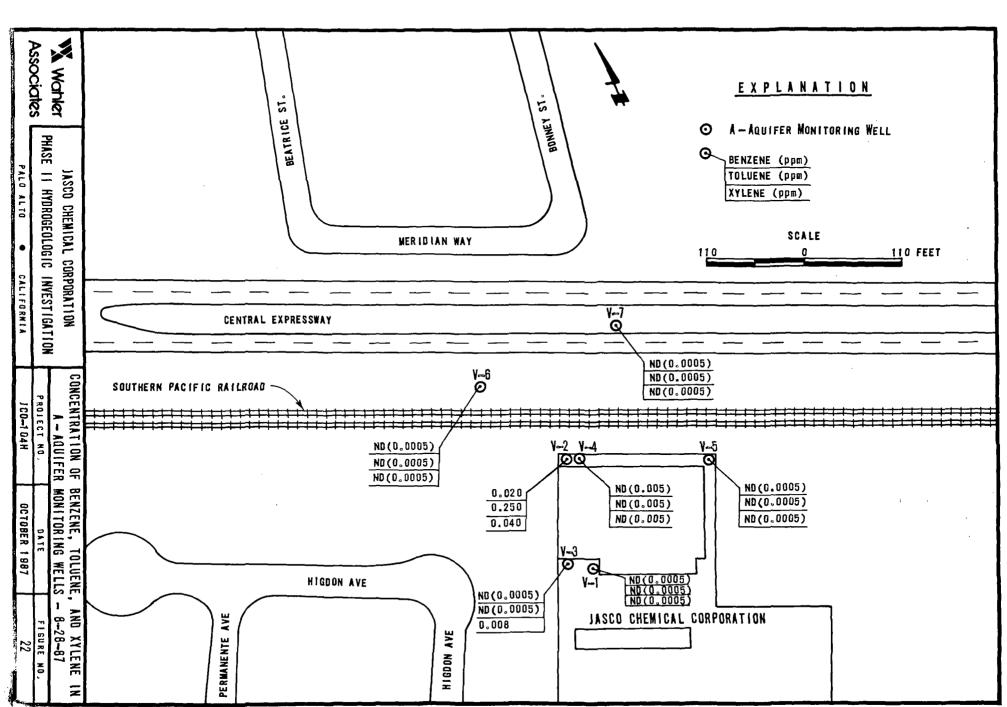


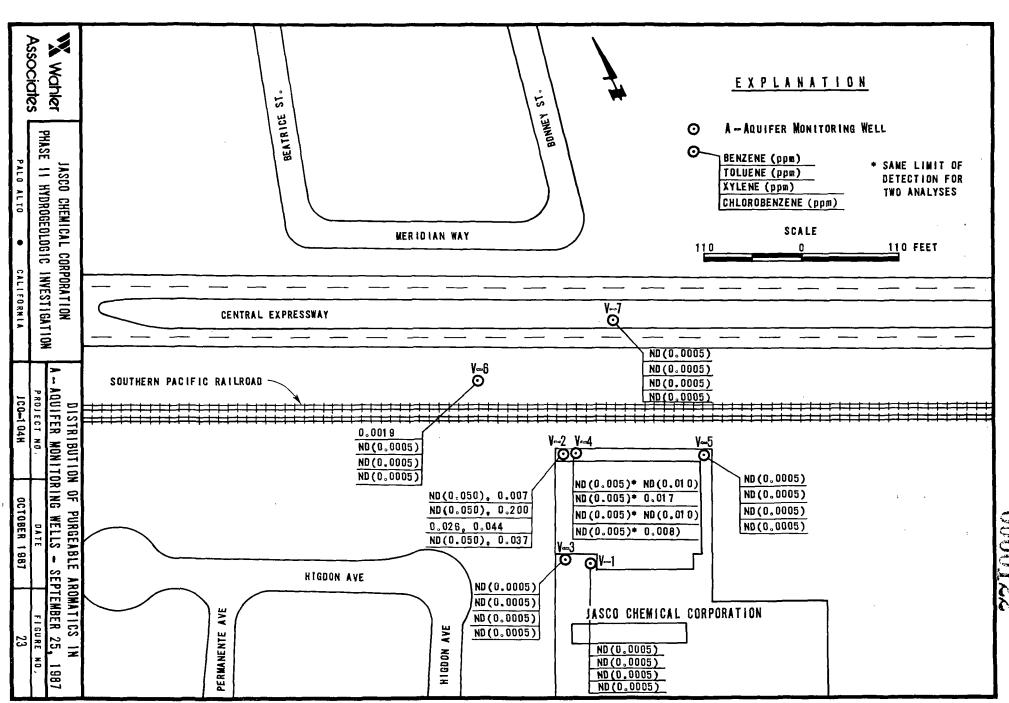


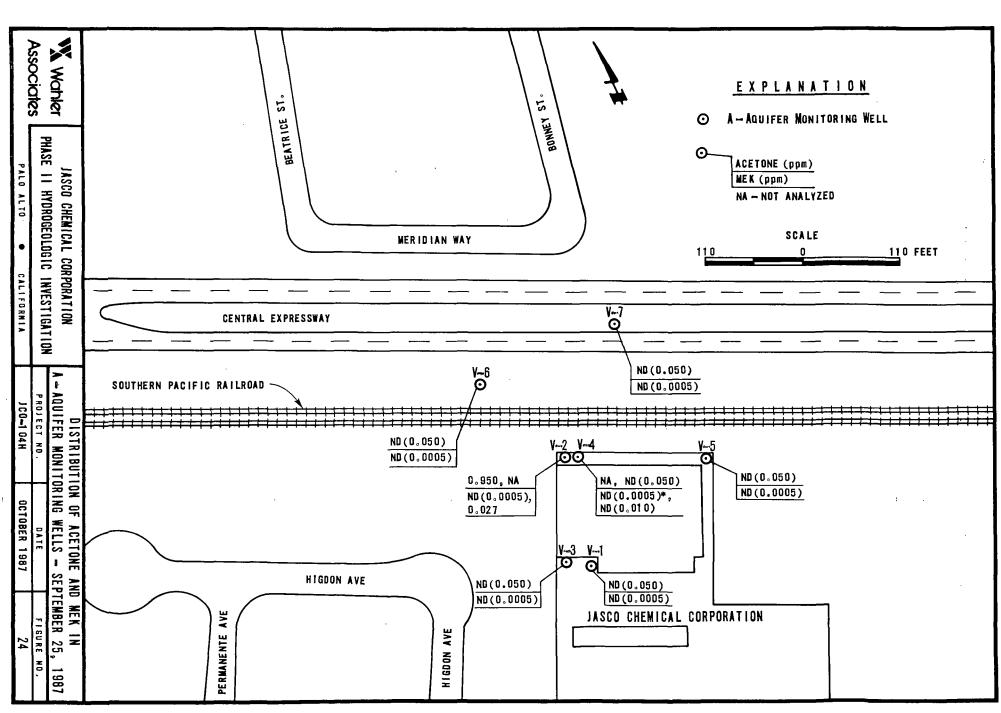


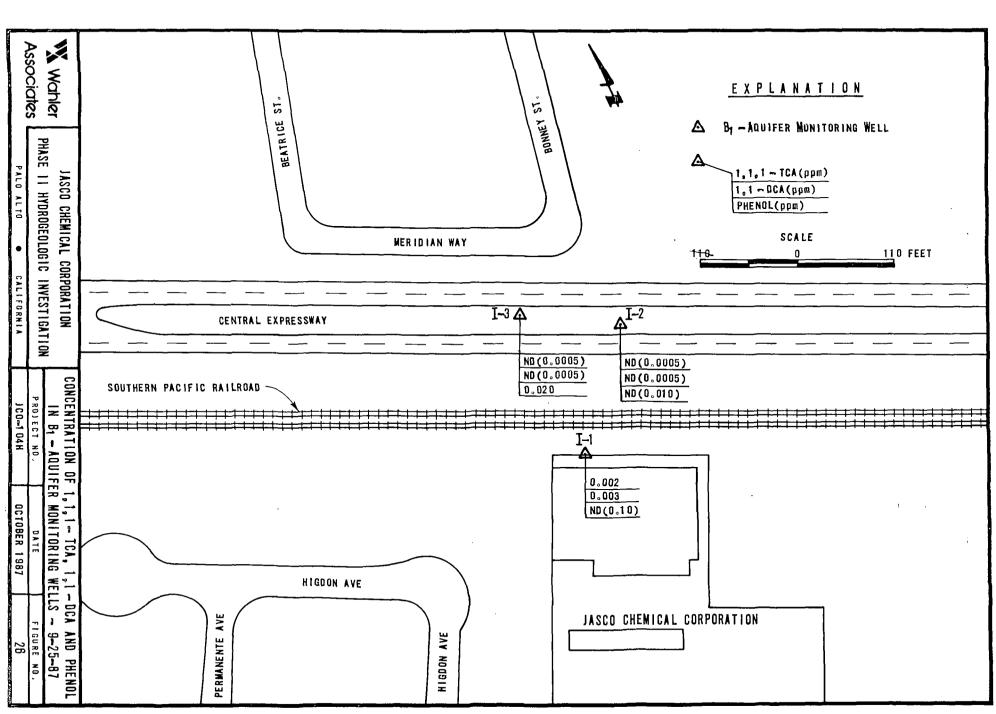


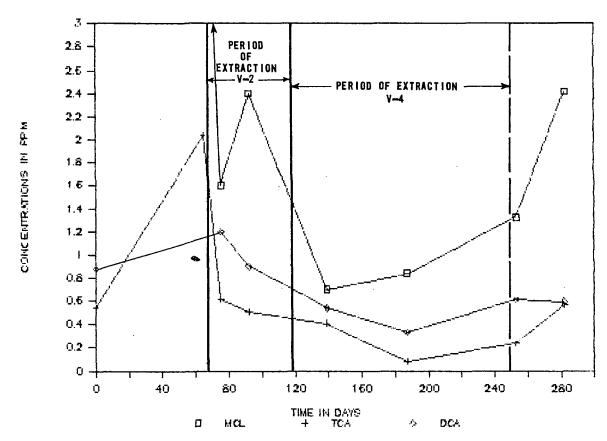


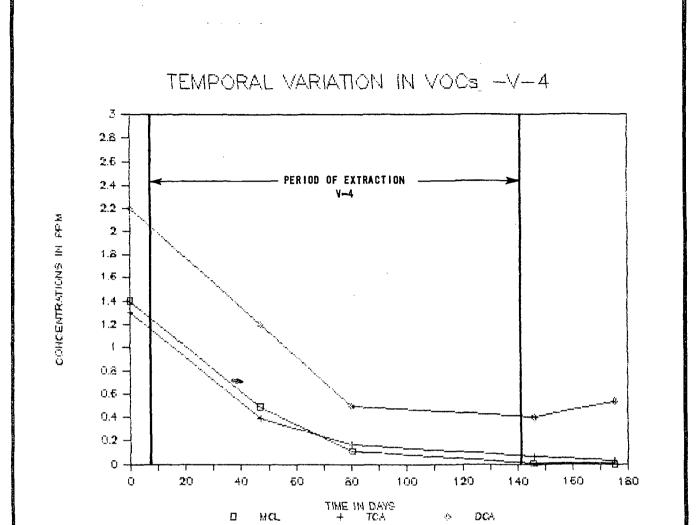











ううこうこう

TEMPORAL VARIATION IN VOCs -V-2

W Wahler	JASCO CHEMICAL CORPORATION PHASE II HYDROGEOLOGIC INVESTIGATION	,	TION IN CHEMICAL ! AQUIFER WELL V-	
Associates	FRASE II RIDRUGEDLUGIC INTESTIGATION	PROJECT NO.	DATE	FIGURE NO,
7 200010100	PALO ALTO ● CALIFORNIA	JCO-1 04H	OCTOBER 1987	27

Wahler	JASCO CHEMICAL CORPORATION	TEMPORAL VARIATION IN CHEMICAL CONCENTRATION A - AQUIFER WELL V-4						
Associates	PHASE II HYDROGEOLOGIC INVESTIGATION	PROJECT NO.	DATE	FIGURE NO.				
7830014160	PALO ALTO CALIFORNIA	JCO-1 04H	OCTOBER 1987	28				

APPENDIX A

•

	LOCATION JASCO CHEMICAL CORP. (ILLEY. WATER 23.5' (B-11-87) DRILL		tor H &				GROUND EL. TOTAL DEPTH 4
}	IG CME 75 BORING DIA. B.C			DRILL			
SOIL CLASS.	DESCRIPTION	DEPTH	SAMPLE NO.	PR RQD	REC.	MODE	REMARKS
	0.0.1.0' SANDY CLAY! Top soil,	0.0					Casto - Driller
CL	Blackish brown (5TR 2/); some	-				AH	Anibal - Helpe
<u>-</u>	gravel; slight organics.	=		,			Advancing hole
-	1.0-3.4' GRAVELBY SAND:	=	T-1		1.6		8.0" hollow Stem au
F	DK. yel. Sm. (10 YR 4/2); ~ 10% Fines,] =			3.0	1	Sampling with a
- 52 -	ron plastic; ~ 60% sand, Fine ito	2.0			}	} '	continuous core .
Esm	coarse grained, mod. grading,	=			ł		lined with clear al tubes (3.0" x 2.5")
F	angular, ~ 30% time gravel, angular	ļ =				ł	termed T-1, T-2, e
-	med. dense do hense; dans.	=					
E	(probable road base)	+0 =		}	2.5]	0.0 - 3.0 Run # 1
E	3.4-11.0' SANDY CLAY:	\	T-2	1	1 —	}	3.0-8.0 Run = 2
ے دی	Olive Blk. (572/1); ~90% Tines,	(<u> </u>			2.5		
F	modito high starts and state	=	1		1		
F	med to high toughness; a 10% sand,	=	 	1	 	-	
E	Fine grained milel	6.0	·	1	} [.]		j
E	time grained, rounded; abundand caliche (heavy rax to HCL); damp.	} =		1	~ ~	1	
E	dans.	=	T-3		2.5		~4.0' slight auger
þ	· · · · · · · · · · · · · · · · · · ·] =	ĺ		2.5		
F .	acort cliebt has solve]_ =		.]			9:51
F	~6.0-7.5 slight brn color	8.0 -	 -	1		1	- B.O
E		=	1	}	2.5	ļ	8.0 - 13.0 Run
E		=	T-4			1	
E		=] , ,	1	2.5		
F-		10.0	1		· ·]	
F		=]]	
F.		=	[1			
-	110 - 20 6 SANDY CLAY! Lt. olive] =	1] .		1	
E	gray (545/2), ~ 10.80% times,] =	T-5		2.5	1	
_	med. plastic, slight dilatancy,	12.0 -	· ·	1	2.5	[
þ	slight to med taughiness] =		1]	1	
‡	slight to med toughness; ~20-30%	=	<u> </u>	1	ļ	1	13.0
F	sand, time to coarse - grained (mostly	=	1	1		1	· 经国际公司 (1983年)
E	Time with rounded coarse); sub	J = =	}		2.5		13.0- 18.0 Ru
E	angular to rounded; some Fe	'*.8 =	T-6	1.00	—	l	
þ	staining and coatings; no convert;] . =	1 /		2.5		
F	no odor; damp. 1. the things.	=	1				75. 75
E] =	}	1		1 .	
E		6.0	}	}	1		
Ė	15.8- 17.2 more claver	···			25		
F	1 1 7	=	1 1- +				
Ė.	less sand.	=		-	2.5		
F		=			L	<u></u>	L 18.0
ECL	17.8-18.7 - gravelly clay	18.0		1]	10:30
E		=	T-8		1.0		18.0 - 21.5 Ru
E] =	 	1	H	1 .	
E CL		-=	T-9		2.5	1	Every Valor
L		20.0	1		2.5	1	CEG #350
		<u> </u>	<u></u>	1	EVDI	0.0 4 7	ION BODING 100
VX W	Cahler JASCO CHEMICAL CO	ORPO	RATION		EXPL		
	ciates				J C D	ECT N	 1
					V (0	1000	

DED=:- /=-	LOCATION DRIVE	ONTES	700				TOTAL DEPTH
	LEV. WATER DRILL	UNIKAC		22///			LOGGED BY
ORILL RI	IG BORING DIA.			DRILL			LUGGED BY
SOIL CLASS.	DESCRIPTION	DEPTH	SAMPLE No.	PR RQD	REC.	MODE	REMARKS
	11.0 - 20.6' SANDY CLAY: (co-1.)	20.6				НА	
۷ ک	30.6 - 24.2 GRAVELLY SAND :	=	7-9]```	_
	Dusky yel. brn (10482/2); -5%		(cond)		2.5		~210 augers grinding
57] =]	- 0 - 1 (
1	Fines; ~ 75% sand, fine-to	_ =					21.5- 23.0 Run# 6
	coarse-grained, poorly to mod. grading (lenses of very poorly	_ و دد	T-10		1.5	}	22.5 ground water
	graded); sub rounded; Fe staining;	=			1- 5		while drilling
	Saturated.] =	·	1	<u> </u>	1	0 23.0-28.0 Runt 7
] =]] _		\$23.5 standing Haowhen
		24.0	7-11	 	2.5		augers removed
	24.2 - 25.5 clay lens	-	,		2.5		·
CL	255-295 SILTY SAND:	=			1		
		=			 		- 25.5°
-	Dusky yel. bim. (10 4R 2/2); -30%	26.0		}		.	sampler blocked off
SM	times, non plastic; ~ 70% sand,	=	No		0.0		at 25.5 and assumed
	time-grained, poorly graded;	ΙΞ	sample		2.5		sandy from as: 5-28.0'b
	(occasional rounded gravel); no odor; sacurated.	_	,		2.3	\	not recovered.
)	=		ļ	<u> </u>		11:00
-	Service and Control of the Control	- c.Bc		1		1	L 28.0
	of clay.] =]]		28.0-33.0 Run#8
		=	T-12		2.5		
	295-353 SILTY SAND	=	,	ļ	2.5		25.5 - DAM.
SM.	GRAVELLY SILTY SAND: Dusky	30.0					very soft
SW	yel. brn (10 /R 3/2) : 1~ 20 %	=		 		-	Ve/2 351 (
12.0 Well	tines, non plastic 1 ~ 60-80%] =		,			
,		=			2.5		
-	mod quading, sub rounded, sub	32.0	T-13			1	
	angular; 20-20% gravel;]			2.5	\	
	abundand Fe staining and coatings]			32 0
	wet, , with Coravelis contined	~				1	11:24
_	to lenses)	24			.2.5		33.0-38.0 Run# 9
		= 0	T-14	1	2.5	1	
		=		1	123		
	2=3-425 SANDY CLAY: DK.] =]	L]	
. C.L		=				1	
	steenish gray (56 4/1), ~60-80%	36.0			2.5	}	
	times, med. plastic (some zones of high plastic), slow dilatancy, med.	=	7-15			1	
	toughness; ~ 20-40 % sand, fine-to	=			2.5.		
,	medium-grained (some engular] =]]	11. 3 1.
	coarse Frags) no cement	38.0	 	1		1	38.0
	low perviousness wet	=			2.5	1	38.0-43.0 Run#10
	The part of the second of the second	=	T-16		2.5		
١	35.7- 37.2 Jone of] =			7.5		450
-	graduation from above muderial	40.0	1				
B B B B B B B B B B	<u> </u>	ــــــــــــــــــــــــــــــــــــــ			E V D I 4	0047	ON DODING LOO SOCIES
X w	CHEMICAL CO	R POR	ATION		EXPL		
		\		1	Don.	ECT NO	SHEET NO. I - 2

The same of the

. •

		CONTRAC					TOTAL DEPTH
DRILL RI	G BORING DIA.			ORILL	EO		LOGGED BY
SOIL CLASS	DESCRIPTION	DEPTH	SAMPLE NO.	PR RQD	REC.	MODE	REMARKS
-	35.3 - 42.5 SANDY CLAY	40.6-	T-16)		2.5	НА	
CL	(cont.)] =	(cont.)	}	7.5	} `	
ì	38.0- 39.5 more sandy		1	l	_		
	38.0 - 38.5 sand lens	=			2.5		
- 1	40.9 - 42.5 '~95% clay	42.0-	T-17	Ì	2.5		•
	42.5 - 47.0' SANDY CLAY!		}	}	}	1	11:55
CL	DK. yel. brn. (10 YR 4/2); ~ 80-90%		}	1	<u> </u>	}	13.0 43.0.4
: . [Fines, med to high plastic, slow	=	}	Į .			1100
CH	dilantancy to none, med to higher towahuess	44.0	T-18		2.5	l	0.0-46.0
	toughness; ~ 10-20 % fine-10] ` ` `		2.5		coming up .
7	medium-grained sand (occasiona coarse)	`\	4		2.5		" (so)?"
CL	coarse), poorly graded, rounded;	=	!	1		1	
.	re coatings + stains , he	460	}		1	•	~ 46.0' wate
	odor; slight rx. to HCL;	1 =	3		2.5		up with cutt
	low to non pervious; stiff; well	.\ =	4-19		2.5	}	
<i>د</i> د	43.0 - 43.3 possible slutt.	=]	1	7.5		
- 	·	48.0		<u> </u>	ļ	<u> </u>	48.0' Ter.
	43.3 - 44.4 clay, very	-	‡			}	i
	slight sand	=	1				drilling.
	44.7 - 47.0 sandy clay with		4			ł	
_	slight gravel	=	3			} `	to llowing termin
	ATO- ABO' CLAYEY SAND:				ļ		Tremie gro
	Okyel bra with red staining;	=	1	1			boting, Fill
	as above with ~60% sandond	=	}				with growt
	40 % tines; 47.7 48.0 sand with	} =	<u> </u>			"	suitace.
-		 	}				
. [Bottom Hole 48.0'	=	4			1	
}			1			1	
			‡		1	1	
		. =	•			{	DATA OF THIS LOG ARE AN AF TION OF THE GEOLOGIC AND FACE CONDITIONS BECAUSE TO
		=	1			1	MATION WAS OBTAINED FROM I DISCONTINUOUS, AND POSSIS TURBED SAMPLING NECESSIT
							USE OF SMALL-DIAMETER ROTARY AND WASH BORING NO FURTHER COMPLICATIONS
		=	‡	1			REGARD BECAUSE OF THE MEE DRILLING FLUID AND/OR CA ADVANCING NOLES.
_ (=	}]		THIS LOG INDICATES CONDI-
		=	1		1		CATED AND MAY NOT REPRESENTIONS AT OTHER LOCATIONS OTHER DATES. ANY WATER
			}	1		1	SHOW ARE SUBJECT TO VA
		=	.		} .	.]	AS TO PROVIDE DATA PRIMA DESIGN PURPOSES AND NOT
-		=	1				SARILY FOR THE PURPOSES CIFIC CONTRACTORS.
: ,		=	‡	1	1 .		THE STRATIFICATION LINES INTERVALS REPRESENT THE MATE BOUNDARIES RETWEEN
] =]	.}	}	1	TYPES, AND THE TRANSITIONS GRADUAL.
}		=	}	1		1	SOIL CLASSIFICATIONS SHOWN ARE FIELD CLASSIFICATIONS THE UNIFIED SOILS CLASSI
			<u> </u>				STATEM.
W.W	chlor	<u> </u>		,	EXPL	DRAT	ION BORING LOG
		-0870	RATION	'		ECT N	
Assoc	ciates (700		

	LOCATION JASCO CHEMICAL CORP. /IN C			WELF M		F/ N/	GROUND EL. TOTAL DEPTH 59.
		40"					'87 LOGGED BY P.F.
SOIL CLASS.	DESCRIPTION	DEPTH	SAMPLE NO.	PR RQD	REC.	MODE	REMARKS
		0.0 _				RD	Arrived on site
	D.O - ~ 2.5 GRAVELLY CLAY	=				1,0	set-up rig i equ
		=	B-3	•			Begin Drilling 9
-		=	6 /		i		Doug - Driller
-		à.0 =					Richard - Helper Jim - Helper
- - -	Grayish	=	,				Drilling with mud
CI	Grayich	=	·	Ť			rotary , 13 1/2 "tri-
-	,				i I		Fif.
-		4.0]			Boring is 7.0° at 1700 From Wel
-] =		Ì	· .		V-7.
-		=					
- -		6.0			,].	
<u>-</u> -					}		
<u>-</u>		=				`	
=	, i] =					_
<u>.</u>		8.0			ļ		- 8.0' 10:00 AM
•		1 =			ļ	ļ	
•		=				}	
:] =		ĺ	İ		
 -	;	10.0-					
•		=					
		=					
<u>-</u>		12.0	B-2				
_	· .		-				
_	~11.0 - 20.0 SANDY CLAY	1 =		}			-13.0' 10117
<u>-</u>		=			ł		
- c (14.0					
=		=	5.3		1		
=		=	— B-3 —]			
<u> </u>		16.0					
- 		=					
- .		=					,
-						1	
<u>-</u>		18.0			'		
Ė		1 =		1		1	
=] =	<u> </u>	1			Emast Holon
=			B-4	.			CE6 #350
<u> </u>	~ 20.0 - 14.0 SAND	30.0-		1	<u> </u>	<u> </u>	
W _V	Vahler Jassa Chenical C			-	EXPL	ORATI	ON BORING LOG BORI
	ciates Jasco Chemical Co	SRPOR.	MOITP			IO4	

	LOCATION						GROUND EL.
	LEV. WATER DRILL O	UNTRAC		DRILL			TOTAL DEPTH
ILL R	BURING DIA.			PR			LOGGED BI
LASS.	DESCRIPTION	DEPTH	SAMPLE NO.	RQD	REC.	MODE	REMARKS
	20.0-240 SANS	20.0-				RD	
		=					
				,		ļ	
P	·]					
	·	22.0					
		=	B-5				
	·	=	-	•			
		34.0					— 24:0 11:00
		```=			١.		S 1.5
		=					•
		] =					•
		26.0-	R-6				·
		] =		Ì			
	PYLO-47.0 - CLAYEY SAND	=	<b></b>	-			
		=		1			
_	· · ·	28.0		1			
	_	] =					
		\ <u>=</u>	B-1		ļ	ļ	· ·
		] =		i	1	i	
		30.0		1	ļ		N. 11 1 400'
		=		1	İ		Drilled to 40.0"
					ľ		Installed 8.0"
		320-	L			i	steel casing to
		=			}		40.0' and pushed
		=			l		10.42.00
		] =	B-8				Installed grout a pe
		34.0		<b>,</b>			to 38 and pumped
		=		] .			hole full of grow
		=	<b> </b>	1			(used 18 bags
			1	1			cement en 200 gal
		36.0	ļ	1			H20) 2:40pm
		=	B-9	]			Note: Arrived Monda
		=		1			(17 Aug.) and casing
		] =					was slill full of Hz
		38.0		]			meaning that the sea
		1 =	B-10				was good.
		] =	<b>1</b> b .	] -			2.4
		40.0	<u> </u>	]			- 12:10
/BA			1	┸		<u> </u>	<del></del>
'X v	Vahler JASCO CHEMICAL COF	Doal	14.0.17	1	EXPL		
	ciates	, , <b>-</b> . , /		}		ECT N	

and the second the second of the second second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco

ORING L	OCATION							GROUND EL.
EPTH/E	LEV. WATER	l	DRILL CONTRAC	TOR				TOTAL DEPTH
RILL R	G	BORING D	IA.	DATE	DRILL	ED		LOGGED BY
SOIL CLASS.		DESCRIPTION	DEPTH	SAMPLE No.	PR RQD	REC.	MODE	REMARKS
	24.0-1	47.0 - Clayey Sand Co	CMT.) 40.0-				RD	Arrived on site ~ 10:34M
- {		•	:	1		ļ		(17 Aug 187) Steert drilling 12:25pm
]			1	3				Now drilling with 71/2
SC	(200	A OF THIS LOG ARE AN APPROXIMATION OF THE LOGIC AND SUBSURFACE CONDITIONS RECAUSE		3				Eni-cone bit. Sampling with 30" split spoon sungl
· ]	DIS PLI	: INFORMATION WAS OBTAINED FROM INDURECT, CONTINUOUS, AND POSSIBLY DISTURBED SAM- NG MECESSITATED BY USE OF SHALL-DIAMETER	42.0-	R -1	6			1170 WILL 2.5 160 brass'
	FUR OF	ES. BOTARY AND MASH BURLING HOLES HAVE THEM COMPLICATIONS IN THIS REGARD BECAUSE THE NEED TO USE DRILLING FLUID AND/OR LING IN ADVANCING MOLES.	1 1	R-2	10	1.5	DR	tubes (samples termed R-1, R-2, etc.).
ŧ	THI	S LOG INDICATES CONDITIONS IN THIS HOLE IT ON THE DATE INDICATED AND HAT NOT		R-3	19	2.0	DIX	Sampler is driven by
	125.7 CHE	RESENT CONDITIONS AT OTHER LOCATIONS AND OTHER DATES. ANY WATER LEVELS SHOWN ARE LIFET TO VARIATION.		R-4	33			a 140 lb. slide hanner,
	791	S NOLE WAS LOGGED IN SUCE A WAY AS TO WIDE DATA PRIMARILY FOR DESIGN PURPOSES	44.0-	R-5	8			Free falling 30.0" per blow.
	C11	NOT MECESSARILY FOR THE PURPOSES OF SPE- FIC CONTRACTORS.		R-6	10	1.8	DR	42.0 - 44.0 Drove
	REF RAT	STRATIFICATION LINES OR DEPTH INTERVALS PRESENT THE APPROXIMATE BOUNDARIES BETWEEN PERIAL TYPES, AND THE TRANSITIONS MAY BE		R-7	9	2.0		Sauntlen,
.	\$01	LOUAL.	46 0 -	R-8	(2.	<u> </u>		* K-1 - NO MELENCYNESION.
		ASSIFICATIONS MASED ON THE UNIFIED SOILS ASSIFICATION SYSTEM.		B-1 -	1		RD	44.0-46.8 Driller screwed Up - should not have sample
	47.0 -	54.5 SILTY GRAUGEL	JAND Y	B-3 -	<del> </del>		\	47.0-48.5 Drove
SM-		brn (10 4 R 4/2); ~ 10		R-9	24	1:1	DR	sumpler
. ` ` \	/	tic; ~ 60% sand, 3	/\ · ·	R-10	39	1.5		Note: Gravel
SW	Coarse.	-grained, mod to w	وال	R-11	80		<del></del>	will drilling fro
	· •	duz of bahneon duz, -			}	ł		AB.5' sampler retusal
	~30%	-gravel, fine -gra	ined,	1		ļ	RD	* note: K-9 not save
•	1 V.	er; heavy Fe coa	11	‡		]		WELL CONSTRUCTION
		herining; no odor		B-3		1		10 20" ID PUL
		h perviousness; de						0.0 - 49.0 solid
_	very	lense; saturated	50-	=				49.0-54.5 slotted
				-		}		Install locking well  SEAL Cou
		:		∃				0.0-45.0 grout
			1	<u> </u>	1	. '		45.0-47.0 Bentonite
- !			54.0-		1		<u>'</u>	470-545 Sand (#3
	54.5 -	59.5 SANDY CLI	+4:	1				545-59.5 Bentonit
CL		re gray (5 B 5/1); ~ c		R-12	20	-	<del>                                     </del>	55.0 - 57.0 Drove
CH	Fires, L	righly plastic, high to	ughness	R-13	34	2.0	]	Sampler
•	~10%	sand, fine - to med	.grained =60	R-14	44	2.0	DR	pumped 18 Aug 1
	non per	tine) theavy rix to Ho vious; slight organi	cs froot	R-15	40	]		8-30 AM
	like br	own spots), no odor		1	<del>  `-</del>		<u> </u>	To the second second
	hard;	dain ?.	580	=	· ·		RD	Terminated boring
				B-4	1			at 59.5'
	59.0	slight increase in	sand.	₹				
	Botto	m. Hole 59.5		<b>]</b>	<del> </del>	<b> </b>		2:15 Water truck left
			60.0-	‡				415 Water truck return
X w	labler		······································			EXPL(	RATI	ON BORING LOG BORING
Assoc	L L	JASCO CHEMIC	AL CORPO	RATION	' E		ECT NO	SHEET NO.
<u> </u>	וטועט					700	104	4H 3 OF 3

DEPTH/E		standing DRILL	CONTRAC	TOR H	FW	Do:			TOTAL DEPTH 3	
DRILL R		BORING DIA. 8.	DEPTH				MODE		LOGGED BY P.S.	f. <u>U</u>
CLASS.	DESCRIPTI	un	DEFIN	NO.	RQD	NEU.	MODE		·.	
-	0.0 - 1.0' SAND	Y CLAY:	0.0			0.5	HA		o · Oriller · Helper	
CL	Brownish black; Top	book; mod.		T-1		1.0	ותא		ring is adv	
- - (1	organics; worms;	•	=				Ī	usin	ig. B.O" hollo	ow
_	Brownish black (59	'A 2/1);~85%	۲.۵ –	T-2		2.5			im augers.	
-	tines, high plastic high loughness; ~1.	, no dilatancy, 5% sand,	=		[	2.5		by o	a CME Con	رط: <u>س</u>
<u>-</u>	tine-to coarse - qi	rained, poorly	=					1	s Sampler u 'x. 2. 5 'clear p	
_	graded (mostly final) subangular; about		4.0			2.3			1 rs.(T)	.00
	ppt.; slight roots			T-3		25		0.0	- 3.5 Run	<del>t. </del> _
<del></del>	danp:	•	] =					3.	5-85 Run	H 3
_	4.2 - 4.6 30ne wht. ppt.	of heavy	6.0		1	_	i			
<u></u>	4.6-5.3 grad	ation jone:		,		2.5				
=	5.3 - 121' CLA			丁-4		2.5			·	
<u>-</u> -	dark yel bra. (104		8.0		ļ			9:04		
<del>-</del> -	195% times, high laughness; 25% s		=		]					٠,
<u>-</u>	grainel; mod. rnx	. to HCL; Fe		T-5		2.5		9	3.5-13.5 Ru	· *
- ·	ctaining (modifing)		10.0	:		د.ء				
<u>-</u> -		. ppt. Huroughout		<u> </u>	· ·	<u> </u>	1		: •	
<u> </u>			=			2.5				ر م م
<del></del>	12.1- (6.3) CRAU	ELLY SANDY	I2.0 —	T-6	}	2.5				
ر ا	CLAY: Lt. olive	<b>-</b> ,	·			2.3		کانې	46	
Ē	~70% Times, mod. dilatancy, med. to.	plastic, slight	1 =	ļ		<u> </u>	1	13	5	
<u>-</u> - -	Sand, Fine to coas	se-grained,	14.0			0.8			135-185 R	UN
-	gt J. Trays ; heavy r	round to augular	<u>ا</u> [	T-7		2.5			~15.0' auger	
<u> </u>	no odor damp.		16.0-			:	1		chattering	•
<del>-</del>	163-18.7 GRAU	ELLY SAND							entolo	u
	Dr. yel. br (1048 fines; ~65% sa	4/2); <5%	=	T-8		2.5	1		EĞ #350	./ ./
_ ~ .v	medium - grained	, well graded	18.0			2.5				
<u> </u>	soprounded, sube	ungular Fe	<u> </u>	<b></b>		<u> </u>	-	18	٠. ک	
E SM	staining , Saturated	cour arained)		7-9		2:1			85-23.51	٠.
	187-241 51	LTY SAND :	- مود			2.5		No	sampler wa	4.
W.W				<u> </u>	<del></del> -	EXPL	DATI	חו ס	<del>'</del>	OR I

Consider the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec

	LOCATION	011======						GROUND EL.
	LEV. WATER DRILL C	UNTRAC						TOTAL DEPTH
RILL R	BORING DIA.	γ		DRILLI	ED .	<del></del>		LOGGED BY
SOIL CLASS.	DESCRIPTION	DEPTH	SAMPLE NO.	PR RQD	REC.	MODE		REMARKS
	18.7-24.1 SILTY SAND	20.0-			2.1		N	o water coming
SM	OK. yel. brn. (1048 4/2); ~40%		(cont.)	i 1	2.5			surface
	Fines; slight to med plastic ( grading	=						-
	low toughness; ~ 60 % sand,	٥. د د	T-10		2.5			
	time - to coarse - grained mostly				2.5			•
	Times = Potatic coaries	=					ر آ د	3.5
-	angular; Fe staining; mod.  pervious; moist.	24.0		 			ء آ	3.5-28.5
دلا	- occasional gravel Frags	] =	T-11		2.5			Run # 6 + 0' H2O
	23.0-24.1 grading less		!		2.5		le	ivel when augers
-	Sandy 24.1-33.5' SANDY CLAY:	26.0-					<b>5</b> -6	emoved,
	DK. greenish gray (56 4/1): ~85%	{ =	T-12		2.5			•
	to high toughness; ~150/a sand,		1-10		2.5		:	
-	tine-grained, poorly graded; no	28.0					ء د	s . <del>S</del>
	organics; no odor; noist.				}		,	•
			T-13		2.5		<u>ک</u> ا	8.5-335 Run#7
-	29.0-32.5 less sandy,	30.0-			2.5			
	almost fat clay			-	<u> </u>			
		32.0—			2.5		_	
<del>-</del>	33.2.33.5 grading yel.		T-14	1	2.5			
	Bottom Hole 33.5	=					11:15	
	LO HOM HOLE 73:3	34.0	<del> </del>	-		<del>                                     </del>	3	
								rminated boring
	DATA ON THIS LOG ARE AN APPROXIMATION OF THE GROLOGIC AND SURSURPACE CONDITIONS MECANISM						ł	ulled augers
-	THE INFORMATION MAS OPTAINED FROM INDIRECT, BISCONTINUOUS, AND POSSIBLY DISTURBED SAM- PLINK INCRESITATED BY USE OF SHALL-DIAMETER BOLES, ROTARY AND WASH BORING HOLES RAVE FUNTURE COMPLICATIONS IN THIS REGARD RECAUSE	=			,		l	le open to 33.5;
	OF THE SPEED TO USE DRILLING FILLID AND/OR CASING IN ADVANCING BOLES. THIS LOG INDICATES CONDITIONS IN THIS SOLE	=					ins	statled grout
	ORLY ON THE DATE INDICATED AND HAY NOT REPRESENT CONDITIONS AT OTHER LOCATIONS AND ON OTHER DATES. ANY WATER LEVELS SHOWN ARE SUBJECT TO VARIATION.		]				b.	pe to bottom,
-	THIS BOLE WAS LOOKED IN SUCH A WAY AS TO PROVIDE DATA FRIMABILY FOR DESIGN PURPOSES AND NOT WICESSARILY FOR THE PURPOSES OF SPE-	=						le, Filled hobe
	CIFIC CONTRACTORS.  THE STRATIFICATION LINES OR DEPTH INTERVALS REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN						l	ith grout. Cutting d displaced H20
	MATERIAL TYPES, AND THE TRANSITIONS HAT BE GRADUAL. SOIL CLASSIFICATIONS SHOWN ON LOGS ARE FIELD	=	1					moved from site
	CLASSIFICATIONS BASED ON THE UNIFIED SOILS CLASSIFICATION SYSTEM.		l	<u> </u>			^	
W.	lahler JASCO CHEMICAL COR	508 v.	7104					ORING LOG BORING N
Assoc		. FUK A	1 101		PROJ プCO	ECT NO		SHEET NO. I -3
	and the Samuel Control of Market States							

and a surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the

EPTH/ELEY. WATER	ISCO CHEMICAL, Beh	DRILL CONTRACT					TOTAL DEPTH 71.0
RILL RIG Failing	1500 BORING DIA	<u> </u>	CONTRACTOR WEEK			a`87	
SOIL	DESCRIPTION	DEPTH	SAMPLE NO.	PR RQD	REC.		REMARKS
As log	of boring I-3	3.0		2		RD	Start Setting up ~ 12:00  Drilling 1:50pm  Drilling with a 13.5"  Thirscore bit. Drilling mud is POLY-GEL with H20.  Doug. Driller Richard & Jim - Helpers
		4.0			-		
		8.6 100					
SP/ Sω		16.0	B-1				2.53 — 18.0
18.5		30.5					Enext folonor

and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t

and the second second second second second

RING LO	CATION									GROUND EL.	
PTH/ELE	V. WATER		DRILL C	ONTRACT	rOR					TOTAL DEPTH	
ILL RIG	•	BORING DI	Α.		DATE	DRILL	ED			LOGGED BY	
OIL LASS.		DESCRIPTION		DEPTH	SAMPLE No.	PR RQD	REC.	MODE		REMARKS	
				20.0				BD			
}											
				=			ļ				
-	•			=			Ĭ				
				م د د د			1				
				]							•
	·										
2	4.0 -	SANDY CLA	<del>Y :</del>	24.0						-	
j	As log of	boring I-3		]	1					11ed to 20	
	9	Ů		=	İ			•	13 1	¿ tri=con+	ع ج ج و ا
}				26.0				]		29.0' and	
							[	į		6" steel co	v
	•	•		) =		· '		}		shed casi	
				] ]				ļ	31.	0'w. 4h.	4.
				28.0							
				∃	B-2	}		ł		18 AUG. 187	
		. (						<b>}</b>	1 4 1 64	(9.0'	
			-	=				Push	Аг	rived on site	2 8:00 AM
		\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		30.0				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Su	vitelized to	Jo" trice
				=		i			2	tart drilling	11:03 AM
			•	=	R-1	8	-	<b></b>	   11: 2.1	31.0-37	કે.૦
]					R-2	15	1.6		1 4, -	Drove split si	3.0"
	•			320-	R-3	24	2.0	DR		Sampler	, .
					R-4	30	1	-		i i	lide hamm
1				=					11/38		11:08 300
			1.	34.5	B-3	1		RD		per bloc	
				34.0-						15 lined X 6.0"	m.4~ラゾ,
				=	<del></del>				v	tubes (+	
				] =		]				R -1 , R-2	
Į	e			36.0			1			in the formal of	
	•	,		=			:				
				[ ∃			1	-	٠.	* * * *	
					B-4	.					
				38.0	. :			}			
			· ·	=							
		grading more	sandy			]					
	( ٢٥٠٠	~ded).	· /	] =							त्र हैं की अंतर के किस्सी
L	<del></del>	<u> </u>	· ————	40.0	<u> </u>	L	<u> </u>	<u>L_</u>			· · · · · · · ·
<b>X</b> Wa	ihler -	A = C11 = 1		'	· ^	,	EXPL	ORAT!	ON B	ORING LOG	BORING N
Associa		CO CHEMICA	r (0	RPOP	(A T 10 A	ĺ	PROJ	ECT NO	).	SHEET NO.	1エ-3

and administration of the second second second second second second second second second second second second

and the transfer with the second and the second

BORING I	<del></del>	ILL CONTRAC	ror				GROUND EL. TOTAL DEPTH
DRILL R	G BORING DIA.		DATE	DRILL	ED		LOGGED BY
SOIL CLASS.	DESCRIPTION	DEPTH	SAMPLE NO.	PR RQD	REC.	MODE	REMARKS
	24.1 - 47.5 SANDY CLAY:	400-				07	
<u> </u>	(cont.)	_   =				RD	
<u>.</u>		1 5	U				WELL CONSTRI
- -		1=	B-4				12.04 SCH 40
		420	(cont)		}		0.0-49.0 5
-		=		1		İ	Install locking wel
	·	=					SEAL
F		44.0	l				00-43.59
	·			,			12:20 +3.5-46.5 45.0 be
- -	, ,	.   =					<del></del>
E	47.0-47.5 grades to sw	^dy   4-6.0			}.		46.5-55.5 Si
Ē		7-6.0	B-5.				55.0-59.5
-	+7.5 - 71.0 GRAVELLY SAN	<u>'D:</u>		·			Bentonit
	DK yel. brn. (10 yR \$/2); ~5-10%				}		59.5-71.0 S
Esw	Tines, non plastic; ~ 60-70%	480		-			
	sand, fine to coarse-graine	٦ , ا	B-6				12:30
	mod to well graded, sub roun sand stone Fragments, Fe coat	. 1 -	R-5	135	0.4/	DR	12:30 - 490-496 Droi 3.0"00 split s
-	1~20-35 % a ravel, Fine, rou	nded	À-7		106		49.6 Sampler with
_	g', nonicemented	;				RD	slide hammer. Refusal i
~	soil is highly pervious no odor very dense; saturated.	;   <u>=</u>				עיי	
111	very dense; sarvice.	=					
-		520-	13-8				
Ė I		1 =		·			
		[ ]					
E		54.0					
E	54.5 some bricklay in			]			
Ē	co Hings	->   <u>-</u>	B-9				
E		=					
F		56.0		.1	•		
F	Blueish gray, roots, damp.	=			ļ		1:25 57.0-58.2 DI
- C L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		R-6	18		<u> </u>	57.0-58.2 Dr
E </td <td></td> <td>500</td> <td>R-7</td> <td>4-5</td> <td></td> <td>DR</td> <td>Refusal @ 58</td>		500	R-7	4-5		DR	Refusal @ 58
ESW			B - 10	50			
Ė				}		RD	
_		\ \ <u>=</u>	B-11	1	1	1	
<u> </u>		600	L ·				
W.W	ahler				EXPLO	RATI	ON BORING LOG BOR
Assoc		LORPO	RATION			ECT NO	
					JCO	104	H 3 OF 4;

	LOCATION						GROUND EL.
	LEV. WATER DRILL C	ONTRAC					TOTAL DEPTH
ORILL R	IG BORING DIA.	· · · · · · ·		DRILL	ED		LOGGED BY
SOIL CLASS.	DESCRIPTION	DEPTH	SAMPLE NO.	PR RQD	REC.	MODE	REMARKS
ςω :	47.0- 71.0 GRAVELLY SAND:	60.0			ı	RD	
Sω	(cont.)	=					
	60.0-71.0 no changes	=					
-		62.0					
		=	B-11		·		
	·	64.0	(cont.)				
-		64.0					
	·	=					-
	·	] =					
-		66.0					
	·	] =					
<del>-</del>		68.0	!				•
		] =	I				
			<u> </u>	36	<u> </u>		- 69.0' - 71.0' Drove
		700	R-8	51	1:3	DR	split spoon sample
			R-9	54	2.0		
	Bottom Hole 710'	=	R-10	70			2:40
							Terminated borin
_		77.0			]		at 71.0'. Flushed
		] =			1		hole, backfilled to
		=					59.0' with #3 sand
		71.0					to 560 with benton
	DATA ON THIS LOG ARE AN APPROXIMATION OF THE	] =					and installed well
•	GROLOGIC AND SUBSURFACE COMDITIONS BECAUSE THE INFORMATION WAS OBTAINED FROM INDIRECT, DISCONTINUOUS, AND POSSIBLY DISTURBED SAM-	=					Pumped seal after well was in place
<b>-</b>	PLING RECESSITATED BY USE OF SMALL-DIAMETER MOLES. ROTARY AND WASH RORHING HOLES HAVE FUNTNER COMPLICATIONS IN THIS RECARD SECAUSE OF THE WELD YOU USE DELLING FLUID AMD/OR	=				i	and placed locking
:	CASING IM ADVANCING HOLES.  THIS LOG INDICATES CONDITIONS IN THIS HOLE ONLY ON THE DATE INDICATED AND HAY NOT	] =					steel cover pipe
	ORAT OF THE DATE HOTICATED AND MAY NOT REPRESENT CONDITIONS AT OTHER ROCATIONS AND ON OTHER BATES. ANY WATER LEVELS SHOWN ARE SUBJECT TO VARIATION.	=					
-	THIS HOLE WAS LOGGED IN SUCH A WAY AS TO PROVIDE DATA PRIMARILY FOR DESIGN PURPOSES AND NOT INCESSABLLY FOR THE PURPOSES OF SPE- CIFIC CONTRACTORS.	=		ļ ·			
•	THE STRATIFICATION LINES OR DEPTH INTERVALS REPRESENT THE APPROXIMATE BOUNDABIES BETWEEN MATERIAL TYPES, AND THE TRANSITIONS HAT BE	=					
•	GRADUAL  BOIL CLASSIFICATIONS SHOWN OF LOGS ARE FIELD CLASSIFICATIONS BASED ON THE UNIFIED SOLLS	=					. Agr
<b>-</b>	CLASSIFICATION SYSTEM.	$\perp$ $\bar{z}$					
W V	/ahler Tasco Chitanical Co	-			EXPL	RATI	ON BORING LOG BORING N
	ciates JASCO CHEMICAL CO	DR PO	RATION	, t	PROJ	ECT NO	SHEET NO. I - 3/

Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro

APPENDIX B

_

•

# APPENDIX B LABORATORY INVESTIGATION

# A. <u>INTRODUCTION</u>

This appendix includes a discussion of the procedures followed during the laboratory testing performed on soil samples from wells I-2 and I-3. The investigation program was carried out employing, in most cases, currently accepted test procedures of the American Society of Testing and Materials (ASTM).

Undisturbed thin wall tube samples used in the laboratory investigation were obtained during the course of the field investigation as described in the Well Construction Section of this report. Identification of each sample is by holé number, sample number, and depth.


### B. INDEX PROPERTIES TESTING

In the field of soil mechanics, it is advantageous to have a standard method of identifying soils and classifying them into categories or groups that have similar or distinct engineering properties. The most commonly used method of identifying and classifying soils according to their engineering properties is the Unified Soil Classification System (USCS), as described by ASTM D2487-83. The USCS is based on a recognition of the various types and significant distribution of soil characteristics, and plasticity of materials.

The index properties tests discussed in this report include the determination of natural and as-tested water content and dry density, vertical permeability, grain-size distribution, and Atterberg limits.

### 1. Natural Water Content and Dry Density

Natural water content and dry density were determined, usually in conjunction with other tests, on selected undisturbed tube samples. The samples



were extruded and visually classified, trimmed to obtain a smooth flat face, and accurately measured to obtain volume and wet weight. The samples were then dried, in accordance with ASTM 2216-80, for a period of 24 hours in an oven maintained at a temperature of 110°C. After drying, the weight of each sample was determined and the moisture content and dry density calculated. All the water content and dry density results are summarized in Table B-1 and are also shown with the various other index and engineering properties test results.

# 2. Grain-Size Distribution

The gradation characteristics of selected samples were determined in accordance with ASTM D422-63 and USBR E-6, except as modified below. The gravelly samples were initially sieved through the 3/4-inch and 1-1/2-inch sieves. Representative samples were obtained and soaked in water until individual soil particles were separated and then washed on the No. 200 mesh sieve. That portion of the material retained on the No. 200 mesh sieve was oven-dried and then mechanically sieved. A hydrometer analysis was performed on a representative portion of the minus No. 200 mesh material of selected samples. The hydrometer test was run in a constant-temperature hydrometer bath using sodium hexametaphosphate as a dispersing agent. The grain-size distribution tests are presented on Figures B-1 and B-2.

### 3. Atterberg Limits

Liquid and plastic limits were determined on selected samples in accordance with ASTM Designation D4318-83. Results of the Atterberg limits tests are summarized on Figure B-3.

### C. ENGINEERING PROPERTIES TESTING

Vertical permeability tests were performed on selected soil samples from wells I-2 and I-3.

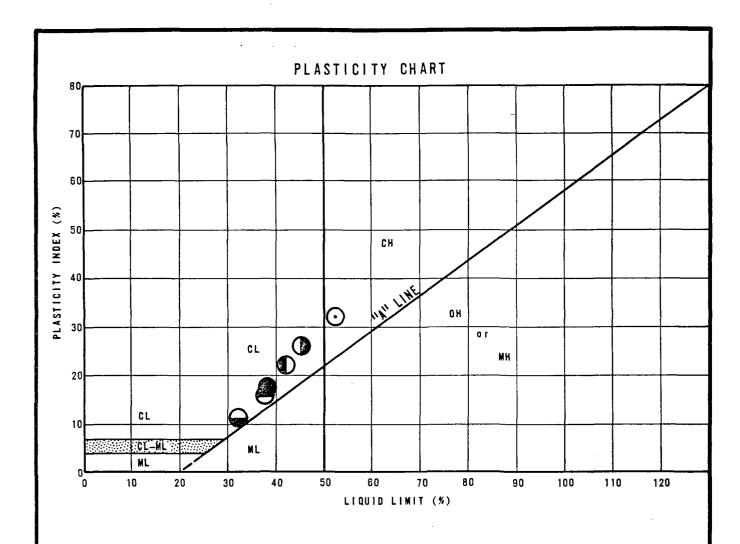
### Permeability Tests

The tests were performed in general accordance with the Gorps of Engineers Test Method EM-1110-2-1906. Below is a description of the test procedure.

The samples were extruded from the tubes and placed in a special cradle that supported the specimen horizontally while the ends were trimmed to a flat face. After the initial weight and volume measurements were determined, each specimen was placed in a triaxial cell, encased in a latex membrane and sealed to the bottom pedestal and top cap with rubber "0" rings. After securing the triaxial chamber, the cell was filled with water and transported to the saturation bay. The samples were saturated using a combination vacuum-back pressure technique. A small vacuum was applied to de-air the lines and increase the initial saturation without a change in void ratio. A back pressure of 50 psi was then incrementally applied to obtain a sufficient degree of saturation prior to consolidation. In order to determine whether the back pressure applied was causing complete saturation, Skempton's "B" parameter in excess of 0.9 was measured for all samples. After achieving saturation, the samples were consolidated to pressures equivalent to overburden load.

The permeability was determined by applying a constant head hydraulic gradient and monitoring the flow of water from bottom to top of the sample through calibrated constant diameter sight tubes as a function of time. The consolidation pressure and head pressure used for each test appears on the data sheet. The permeability test results, together with the gradation characteristics of the samples tested are presented in Table B-1.

TABLE B-1
PERMEABILITY TEST RESULTS


				Nat Water	ural Dry	As-T Water	ested	Consolidate	d	Coefficient of
Hole <u>No.</u>	Sample No.	Depth, ft.	USCS Classification	Content (%)	Density (pcf)	Content (%)	Density (pcf)	Pressure (psi)	Head, (psi)	Permeability cm/sec
I-2	T-6	13.7-14.2	СН	26.2	92.5	29.5	95.2	11	0.5	2.4x10 ^{-4*}
I-2	T-13	31.7-32.4	SW-SM	15.1	119.1	15.2	121.1	27	0.5	$2.3 \times 10^{-4}$
1-2	T-15	37.4-37.9	CL	27.5	97.7	25.8	101.5	26	2.0	$3.1 \times 10^{-7}$
1-2	R-10	47.5-48.0	SW-SM	17.4	110.9	17.9	113.5	32	0.5	$2.3 \times 10^{-4}$
I-2	R-15	56.5-57.0	CL	23.0	104.8	20.8	110.5	36	5.0	$2.3 \times 10^{-8}$
1-3	т-6	12.9-13.4	CL	20.0	102.6	23.7	105.1	11	0.5	2.5x10 ^{-4*}
1-3	T-10	22.7-23.2	SP-SM	14.8	122.7	14.3	124.8	23	1.0	$5.2 \times 10^{-5}$
1-3	T-12	26.2-26.7	CL	25.7	98.5	24.3	101.7	22	2.0	$2.8 \times 10^{-6}$
1-3	R-5	49.0-49.5	SW	13.4	124.7	12.3	128.2	37	0.5	$1.2 \times 10^{-4}$
I-3	R-6	57.0-57.5	SC	21.6	108.4	19.7	112.5	38	2.0	$2.9 \times 10^{-7}$

^{*}Permeability was influenced by roots and root holes in samples.

Samples were tested in triaxial cells after back pressure saturation and consolidation equal to overburden load. The permeability was determined by applying a constant head hydraulic gradient and monitoring the flow of water from bottom to top of the sample through calibrated constant diameter sight tubes as a function of time.

45MIN. 15M	IR. TIME	NP	38 21 17 27.5  CL T-15 37.4-37.9 I2	NP NP 0 17.4  SW-SM R-10 47.5-48.0 I2	42 20 22 21.4  CL R-15 56.5-57.0 I2	SIEVE ANALY		EAR SQUARE OPENINGS 3/4" 1-1/2"	311 61
PI NAT. W/C SPEC. GRAVITY CLASSIF.SYMB. SAMPLE NO. DEPTH, FT. HOLE NO.  25 HR. 7 HANNIN 15 M	20 32 27.1  CH T-6 13.7-14.2 I-2 HYDROME	NP 0 15.1 SW-SM T-13 31.7-32.9 I2 JER ANALYSIS READINGS	21 17 27.5  CL T-15 37.4-37.9 I2	NP 0 17.4  SW-SM R-10 47.5-48.0 12	20 22 21.4  CL R-15 56.5-57.0 I2		(S)S	EAR SQUARE OPENINGS 3/4" 1-1/2"	
PI NAT. W/C SPEC. GRAVITY CLASSIF.SYMB. SAMPLE NO. DEPTH, FT. HOLE NO.  25 HR. 7 HANNIN 15 M	32 27.1  CH T-6 13.7-14.2 I-2 HYDROME	0 15.1  SW-SM T-13 31.7-32.9 I-2 JER ANALYSIS READINGS	17 27.5  CL T-15 37.4-37.9 I2	0 17.4  SW-SM R-10 47.5-48.0 I2	22 21.4  CL R-15 56.5-57.0 I2		(S)S	EAR SQUARE OPENINGS 3/4" 1-1/2"	
NAT. W/C SPEC. GRAVITY CLASSIF.SYMB. SAMPLE NO. DEPTH, FT. HOLE NO.  25 HR. 7 HANDLE NO. 90	27.1  CH T-6 13.7-14.2 I-2 HYDROME	15.1  SW-SM T-13 31.7-32.9 I-2 TER ANALYSIS READINGS	27.5  CL T-15 37.4-37.9 I2	17.4  SW-SM R1 0 47.5-48.0 I2	22 21.4  CL R-15 56.5-57.0 I2		(S)S	EAR SQUARE OPENINGS 3/4" 1-1/2"	
SPEC. GRAVITY CLASSIF.SYMB. SAMPLE NO. DEPTH, FT. HOLE NO.  25 HR. 7 H	CH T-6 13.7-14.2 I-2 HYDROME:	SW-SM T-13 31.7-32.9 I-2 TER ANALYSIS READINGS	CL T-15 37.4-37.9 I-2	SW-SM R1 0 47.5-48.0 I2	21.4  CL R-15 56.5-57.0 I~2		(S)S	EAR SQUARE OPENINGS 3/4" 1-1/2"	
CLASSIF.SYMB. SAMPLE NO. DEPTH, FT. HOLE NO.  25 HR. 7 H	CH T-6 13.7-14.2 I-2 HYDROME	SW-SM T-13 31.7-32.9 I-2 TER ANALYSIS READINGS	CL T-15 37.4-37.9 I-2	SW-SM R1 0 47.5-48.0 I2	 CL R-15 56.5-57.0 I2		CLE	EAR SQUARE OPENINGS 3/4" 1-1/2"	
SAMPLE NO. DEPTH, FT. HOLE NO.  25 HR. 7 H	T-6 13.7-14.2 I-2 HYDROME:	T-13 31,7-32,9 I-2 TER ANALYSIS READINGS	T-15 37.4-37.9 I-2	R⊷1 0 47.5~48.0 I2	R-15 56.5-57.0 I-2		CLE	EAR SQUARE OPENINGS 3/4" 1-1/2"	
DEPTH, FT. HOLE NO.  25 HR. 7 HASMIN. 15 NO.	13.7-14.2 I-2 HYDROME: IR. TIME	31.7-32.9 I-2 TER ANALYSIS READINGS	37.4~37.9 I~2	47.,5-48.0 12	56,5-57,0 I-2		CLE	EAR SQUARE OPENINGS 3/4" 1-1/2"	
DEPTH, FT. HOLE NO.  25 HR. 7 HASMIN. 15 NO.	I-2 HYDROME IR. TIME	31.7-32.9 I-2 TER ANALYSIS READINGS	37.4~37.9 I~2	47.,5-48.0 12	56,5-57,0 I-2		CLE	EAR SQUARE OPENINGS 3/4" 1-1/2"	
HOLE NO.  25 HR. 75 45 MIN. 15 M	I-2 HYDROME IR. TIME	I-2 TER ANALYSIS READINGS	I2	I2	I2		CLE	EAR SQUARE OPENINGS 3/4" 1-1/2"	
25 HR. 7 H 45 MIN. 15 M 100	HYDROME:	TER ANALYSIS READINGS		U.:			CLE	EAR SQUARE OPENINGS 3/4" 1-1/2"	
45MIN. 15M	IR. TIME	READINGS	1MIN. 200		S. STANDARD SERI		CLE	AR SQUARE OPENINGS 3/4" 1-1/2"	
90	IIN. BOMIN.	19 M I N . 4 M I N .	1 MIN. 200	100 5	0 30 1	6 8	3/8"	3/411 1-1/211	311 81
90									
							1-74		1
l									#==
80									
70									
<b>6</b> 0						///			
l 🛱									
									#
≥ ⁵⁰									
*									
		1/							
30									
20									
					4				
10									
									$\pm$
	003 004 005 006	000			4 10 10 10 10 10	0 6 4	ი ი ∟ ფიე	20 30 50 80	2 8 6 6
	2 .005	.009 .019	.037 .075	.150 .30	00 .600 1.	18 2.38 4.	76 9.52	19.0 38.1 7	76.2 152.4
		<del></del>		UIAMEILK UF PAR		1FK2	<del> </del>		1
CI	LAY (PLASTIC) T	O SILT (NON-PLA	STIC)	FINE		COARSE			COBBLES
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	30	20	30	30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 30 20 30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2

			and the second second	ing the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th					AFTER	7 HOUR READING.	
$\triangleright$	.4	KEY:		سے خصہ جست دست				estadiji sesti se erapi ili seta ili ili ili ili ili ili ili ili ili il		The first of the second of the second of the second of	and the state of the control of the control
Associates	Wohler Wohler	LL	45	NP	37	NP	32		· · · · · · · · · · · · · · · · · · ·		
8	≸	PL	19	NP	21	NP	21	i	· · · · · · · · · · · · · · · · · · ·		
Q.	볼	PI	26	0	16	0	11	<del> </del>			
ਲ੍ਹ	ই	NAT. W/C	18.6	14.8	24.8	13.4	20,2				<del></del>
I -		SPEC. GRAVITY									
	35 <b>T</b> Hd	CLASSIF.SYMB	. CL	SP-SM	CL	SW	22				
	٠ ۲	SAMPLE NO.	T-6	T-10	T-12	R5	R-6	<del> </del>		<u> </u>	
		DEPTH, FT.	12.9-13.4	22.7-23.2	26.2-26.7	49.0-49.5	57.0-57.5			<del></del>	
[ =	SC	HOLE NO.	I3	I3	I-3	I-3	I=3			t	
PALO ALTO • CALIFORNIA	JASCO CHEMICAL CORPORATION			ER ANALYSIS		1		SIEVE ANAL	Y S 1 S	<u></u>	
70 5	ま 声 !	25 H R . 7	HR. TIME	READINGS	1	U.	S. STANDARD SER		e c	LEAR SQUARE OPEN 3/4 ¹¹ _ 1-1/2 ¹¹	INGS
	<u> </u>	45 MIN. 15	MIN. BOMIN.	19 MIN. 4 MIN.	<u> 1 M I M . 2 0 0</u>	100 5	0 30	16 8	3/811	3/4" 1-1/2"	311 611
10 5	3 =									7 /	
2 5	? 육										
<u> </u>	2 PB	90									
2 2	RAT								/		
عَ اجْ		8.0							///		
] [	= -								///		
5	<b>}  </b>	H 70							1 /		
┠╌┼─	,	🚊 7 0									
	f i	<u>*</u>									
_ =	<b>!</b>	~ 60									
ŞP	1 1	FINER B									
	1 1	Ē									
PROJECT NO. JCO-104H	i 1	50									
	GRADAT Astm	50 EBCEN1									
	55	40									
	3 -										
8	1 O N D422		/ /					7			
DATE OCTOBER 1987		30						<b>7</b>			
DAT BER	8 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3	*									
19	ST ST	2 0									
87	R E USBR	<u> </u>									
	E-8 Jus							F	<del></del>		
	1	10									
2	S										
F1 GURE 8-2	1	D <u>L</u>		111 11 <u>1</u>	# 4 # # # # # # # # # # # # # # # # # #		· + n n r n n n	1 1 1	# F F F # F	<del>-            </del>	2 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
~ ~	}		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.009 .019			•				•-
NO.	ì	. ··		.000 .018		.150 .31 DIAMETER OF PAR	TICLE IN MILLIME	TERS 4	.76 9.52	19.0 38.1	78.2 152.4
	]	1	CLAY (PLASTIC) T	O SILT (NON-PLAS	I		SAND			GRAVEL	COBBLES
	باسسا	·	(	(non-1 LA	,	FINE	MEDIUM	COARSE	FINE	COARSE	



# PLASTICITY DATA

KEY Symbol	HOLE Number	DEPTH (ft)	NATURAL WATER CONTENT W (%)	PLASTIC Limit (%)	LIQUID Limit (%)	PLASTICITY INDEX (%)	LIQUIDITY INDEX  (W-PL LL-PL)	UNIFIED SOIL CLASSIFICATION SYMBOL
0	I-2, T-6	13.7-14.2	27.1	20	52	32	Marie COLON	CH
•	I-2, T-15	37.4-37.9	27.5	21	38	17	Belotes	CL
<b>①</b>	I-2, R-15	56 <b>.</b> 5-57.0	21 . 4	20	42	22	Hew S	CL
<b>(</b>	I-3, T-6	12.9-13.4	18.6	19	45	26	and programs has	CL
	I-3, T-12	26.2~26.7	24.8	21	37	16		CL
<b>-</b>	I3, R6	57.0-57.5	20.2	21	32	11	ger barrell tea	SC
						:		
<i>28</i> 4		ISCO CHEMICAL	4		17750050	G LIMITS .	0110710	TV DIT

Wahler Associates

JASCO CHEMICAL CORPORATION

PHASE II HYDROGEOLOGIC INVESTIGATION

PALO ALTO • CALIFORNIA

ATTERBERG LIMITS - PLASTICITY DATA ASTM D4318-84

PROJECT NO. DATE FIGURE NO.

JCO-104H OCTOBER 1987 B-3

APPENDIX C



Date Sampled: 08/20/87
Date Received: 08/20/87
Date Extracted: 09/03/87
Date Reported: 09/10/87
Project No. JCO-104H

Sample Number

7081483

Sample Description
Water, JCO-817, Tap

# PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein		- ·	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile		-	1,2-Dichloropropane	<	0.5
Benzene		-	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene		-
Bromodichloromethane		0.71	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene		-	1,1,1-Trichloroethane	<	0.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform		71	Toluene		-
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
1,1-Dichloroethane	<	0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	<	0.5
1,1-Dichloroethene	<	0.2		•	

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Method 601 of the EPA was used for this analysis.



Date Sampled: 08/20/87
Date Received: 08/20/87
Date Extracted: 09/03/87
Date Reported: 09/10/87

Project No. JCO-104H

Sample Number

7081484

Sample Description
Water, JCO-817, Tank

### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein		-	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile		-	1,2-Dichloropropane	<	0.5
Benzene			1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene		-
Bromodichloromethane		1.1	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene		-	1,1,1-Trichloroethane	<	0.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform		72	Toluene		-
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
1,1-Dichloroethane	<	0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	<	0.5
1,1-Dichloroethene	<	0.2	·		

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Method 601 of the EPA was used for this analysis.

# LABORATORY SERVICES

**ENVIRONMENTAL** • ANALYTICAL CHEMISTRY 2754 AJELLO DRIVE • SAN JOSE. CA 95111 • (408) 629-1132



**ASSOCIATES** 

September 9, 1987 Work Order Number 8708113 Date Received 8/31/87 Project No. JC0-104H

WAHLER Robert Breynaert Wahler Associates P.O. Box 10023 Palo Alto, CA 94303

One water sample was received for analysis of halogenated and aromatic volatile organics by gas chromatography, using the following EPA method(s):

ANAMETRIX I.D.

SAMPLE I.D.

METHOD(S)

8708113-01

U-2 (V-2)

601/602

RESULTS

See enclosed data sheets, Forms 1-1 thru 2-1.

EXTRA COMPOUNDS

Confirmation by GC/MS indicates that the following compounds were present below instrument detection limit: chloroethane; 1,1-dichloroethene; cis-1,2-dichloroethene; trichloroethene. Also detected by GC/MS were acetone, 2-butanone (methyl ethyl ketone).

DOCUMENT INVENTORY

See enclosed documents 1 thru 17.

If there is any more that we can do, please give us a call. Thank you for using ANAMETRIX, INC.

Sincerely,

Sarah Schoen, Ph.D. GC Supervisor

SRS/qp

# ORGANICS DATA ANALYSIS SHEET - EPA METHOD 601/8010

: U-2 (V-2.) Sample I.D.

Anametrix I.D.: 8708113-01

Matrix : WATER Date sampled : 8-27-87 Date analyzed : 9-8-87

Analyst : MUT Supervisor : 50V

Dilution : 1:100

Date released : 9-9-87

CAS #	Compound Name	Det. Limit (ug/l)	(ug/l)	Q
 74-87-3	* Chloromethane	1 100	 	U U
74-83-9	* Bromomethane	50	i	ט ו
75-71-8	* Dichlorodifluoromethane	100	İ	U
75-01-4	* Vinyl Chloride	50	i	iυ
75-00-3	* Chloroethane	50	i	jυ
75-09-2	* Methylene Chloride	50	1700	+
79-69-4	* Trichlorofluoromethane	50	İ	ับ
75-35-4	* 1,1-Dichloroethene	50	İ	ו ע
75-34-3	* 1,1-Dichloroethane	50	630	į +
156-59-2	# Cis-1,2-Dichloroethene	50	İ	U
156-60-5	* Trans-1,2-Dichloroethene	50	j	ָט ן
67-66-3	* Chloroform	50	1	U
76-13-1	# Trichlorotrifluoroethane	50		U
107-06-2	* 1,2-Dichloroethane	50	İ	ָ ט
71-55-6	* 1,1,1-Trichloroethane	50	200	+
56-23-5	* Carbon Tetrachloride	50	İ	ָט ן
75-27-4	* Bromodichloromethane	50	1	U
78-87-5	* 1,2-Dichloropropane	50	}	ט ן
10061-02-6	* Trans-1,3-Dichloropropene	50	Ì	ט ן
79-01-6	* Trichloroethene	50	l	ָט ן
124-48-1	* Dibromochloromethane	50		ט
79-00-5	* 1,1,2-Trichloroethane	50	1	U
10061-01-5	* cis-1,3-Dichloropropene	50		U
110-75-8	* 2-Chloroethylvinylether	100	[	U
75-25-2	* Bromoform	50	i	ן ע
127-18-4	* Tetrachloroethene	50	1	U
79-34-5	* 1,1,2,2-Tetrachloroethane	50	1	U
108-90-7	* Chlorobenzene	50	1	U
541-73-1	* 1,3-Dichlorobenzene	100	1	ט ן
95-50-1	* 1,2-Dichlorobenzene	100	!	ן ט
106-46-7	* 1,4-Dichlorobenzene	J 100	i	U
	% Surrogate Recovery		l 61	 I

^{*} A 601/8010 approved compound (Federal Register, 10/26/84)

For reporting purposes, the following qualifiers (Q) are used:

[#] A compound added by Anametrix, Inc.

^{+ :} A value greater than or equal to the method detection limit.

U: The compound was analyzed for but was not detected.

# ORGANIC ANALYSIS DATA SHEET - EPA METHOD 602/8020

Sample I.D. : U-2 Anametrix I.D. : 8708113-03

Matrix : WATER Analyst : MG
Date sampled : 8-27-87 Supervisor : 815
Date analyzed : 9-8-87 Date released : 9-9-87

Dilution : 1:20

     CAS #	Compound Name	Det. Limit (ug/l)	(ug/1)	     Q
71-43-2	Benzene	10	20	+
108-88-3	Toluene	10	250	j + j
108-90-7	Chlorobenzene	j 10	Ì	ן ט ן
100-41-4	Ethylbenzene	10	Ì	ן ט ן
Ì	Xylenes	20	50	+
95-50-1	11,2-Dichlorobenzene	20	ĺ	ן ט
541-73-1	1,3-Dichlorobenzene	j 20	Ì	ן ט
106-46-7	1,4-Dichlorobenzene	20	İ	ן ט ן
78-93-3	Methyl ethyl ketone	200	1	ן ט ן
1	% Surrogate Recovery		82	

For reporting purposes, the following qualifiers (Q) are used:

+ : A value greater than or equal to the method detection limit.

U : The compound was analyzed for but was not detected.

Form 2-1.

ENVIRONMENTAL • ANALYTICAL CHEMISTRY 2754 AIELLO DRIVE • SAN JOSE, CA 95111 • (408) 629-1132

# Document Inventory

Project # 8708113

DOCUMENT CONTROL #	DOCUMENT TYPE
8708113-000001	Initial Method 601 Calibration
2–12	Daily Method 601 Calibration Chromatograms
. 13	Sample screen
14-16	Sample Chromatograms
17	Sample Chromatogram Method 625

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number	Sample Description Water	DetectionLimit ppm	Total Hydrocarbons as Paint Thinner ppm
	,		
7082427	V-1	1	< 1.0
7082428	V-2	1	< 1.0
7082429	<b>V-</b> 3	1	< 1.0
7082430	V-4	1	< 1.0
7082431	V-5	1	< 1.0
7082432	V-6	1	< 1.0
7082433	V-7	1	< 1.0
7082434	I-1	1	< 1.0

NOTE: Analysis was performed using EPA methods 3510 and 8015.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

mpr.



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

### Sample Number

7082427

# Sample Description

Water, V-l

### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride	<	0.5
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	1,1,1-Trichloroethane	<	0.5
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride	<	0.5
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane	< 0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	< 0.5	1,4-Dichlorobenzene	ζ.	0.5
l,l-Dichloroethene	< 0.2			

SEQUOIA ANALYTICAL LABORATORY

est Cocanous

Arthur G. Burton
Laboratory Director

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

mpr

Date Sampled: 08/28/87
Date Received: 08/31/87
Date Extracted: 09/04/87
Date Reported: 09/16/87
Project No. JCO-104H

Sample Number 7082427

Sample Description
Water, V-l

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4-Dimethylphenol	< 1
2,4-Dinitrophenol	< 1
2-Methyl-4,6-dinitrophenol	< 1
2-Nitrophenol	< 1
4-Nitrophenol	< 1
Pentachlorophenol	< 1
Phenol	< 1
2,4,6-Trichlorophenol	< 1

NOTE: Method 604 of the EPA was used for this analysis.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082427

Sample Description

Water, V-1

#### ANALYSIS

Methanol, ppm	< 1
Ethanol, ppm	< 1
Isopropyl Alcohol, ppm	< 1
Acetone, ppm	< 1
Methyl Ethyl Ketone, ppb	< 0.5
Xylene, ppb	< 0.5

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

mpr



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082428

Sample Description

Water, V-2

# PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Dibromochloromethane	<10,000 <10,000 <50 <50 <50 <50 <50 <50 <50 <50 <50	Ethylbenzene       < 50         Methylene chloride       270         1,1,2,2-Tetrachloroethane       < 50         Tetrachloroethane       < 50         1,1,1-Trichloroethane       270         1,1,2-Trichloroethane       < 50         Trichloroethane       < 50         Toluene       < 50         Vinyl chloride       < 50         1,2-Dichlorobenzene       < 50
	•	VIII UII UII UII UII UII UII UII UII UII
1,1-Dichloroethane	630	-,
1,2-Dichloroethane		
1,1-Dichloroethene	-	TIT DICHTOLOGOMECHECITICITY TO SO

SEQUOIA ANALYTICAL LABORATORY

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Arthur G. Burton
Laboratory Director ,

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/04/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082428

Sample Description
Water, V-2

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4-Dimethylphenol	< 1
2,4-Dinitrophenol	< 1
2-Methyl-4,6-dinitrophenol	< 1
2-Nitrophenol	< 1
4-Nitrophenol	< 1
Pentachlorophenol	< 1
Phenol	< 1
2.4.6-Trichlorophenol	< 1

NOTE: Method 604 of the EPA was used for this analysis.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082428

Sample Description
Water, V-2

# ANALYSIS

Methanol, ppm	< 1
Ethanol, ppm	< 1
Isopropyl Alcohol, ppm	< 1
Acetone, ppm	< 1
Methyl Ethyl Ketone, ppb	< 50
Xylene, ppb	< 50

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

mpr



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082437

Sample Description

Water, V-2 Duplicate

# PRIORITY POLLUTANTS

VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	< 10	000,0	trans-1,2-Dichloroethene	< !	50
Acrylonitrile	< 10	000,0	1,2-Dichloropropane	< !	50
Benzene	<	50	1,3-Dichloropropene		
Bromomethane	<	50	Ethylbenzene		
Bromodichloromethane	<	50	Methylene chloride		
Bromoform	<	50	1,1,2,2-Tetrachloroethane	<	50
Carbon tetrachloride	<	50	Tetrachloroethene		
Chlorobenzene	<	50	1,1,1-Trichloroethane		
Chloroethane	<	50	1,1,2-Trichloroethane		
2-Chloroethylvinyl ether	<	50	Trichloroethene		
Chloroform	<	50	Toluene		
Chloromethane	<	50	Vinyl chloride	<	50
Dibromochloromethane	<	50	1,2-Dichlorobenzene	<	50
1,1-Dichloroethane		570	1,3-Dichlorobenzene	<	50
1,2-Dichloroethane	<	50	1,4-Dichlorobenzene	<	50
1,1-Dichloroethene	<	20			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Methods 601 & 602 of the EPA were used for this analysis.

sls



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082437

Sample Description
Water, V-2, Duplicate

# <u>ANALYSIS</u>

Methyl Ethyl Ketone, ppm

< 50

Xylenes

< 50

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

mpr

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082429 Sample Description
Water, V-3

### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	00	trans-1,2-Dichloroethene		12
Acrylonitrile	<1	00	1,2-Dichloropropane	<	0.5
Benzene	<	0.5	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride		6.3
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene	<	0.5	1,1,1-Trichloroethane		1.8
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform	<	0.5	Toluene	<	0.5
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
1,1-Dichloroethane		15	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane		1.0	1,4-Dichlorobenzene	<	0.5
1.1-Dichloroethene		1.3			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Methods 601 & 602 of the EPA were used for this analysis.

mpr

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/04/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082429

Sample Description

Water, V-3

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4-Dimethylphenol	< 1
2,4-Dinitrophenol	< 1
2-Methyl-4,6-dinitrophenol	< 1
2-Nitrophenol	< 1
4-Nitrophenol	< 1
Pentachlorophenol	< 1
Phenol	< 1
2.4.6-Trichlorophenol	< 1

NOTE: Method 604 of the EPA was used for this analysis.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082429

# Sample Description

Water, V-3

### ANALYSIS

Methanol, ppm	< 1
Ethanol, ppm	< 1
Isopropyl Alcohol, ppm	< 1
Acetone, ppm	< 1
Methyl Ethyl Ketone, ppb	< 0.5
Xylene, ppb	8.0

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

mpr

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082430

Sample Description
Water, V-4

### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	< 1	0,000 trans-1,2-Dichloroethene	
Acrylonitrile	< 1	0,000 1,2-Dichloropropane	
Benzene	<	5.0 1,3-Dichloropropene < 5.0	
Bromomethane	<	5.0 Ethylbenzene	
Bromodichloromethane	<	5.0 Methylene chloride	
Bromoform	<	5.0 1,1,2,2-Tetrachloroethane < 5.0	
Carbon tetrachloride	<	5.0 Tetrachloroethene < 5.0	
Chlorobenzene	<	5.0 1,1,1-Trichloroethane	
Chloroethane	<	5.0 1,1,2-Trichloroethane < 5.0	
2-Chloroethylvinyl ether	<	5.0 Trichloroethene < 5.0	
Chloroform	<	5.0 Toluene < 5.0	
Chloromethane	<	5.0 Vinyl chloride < 5.0	
Dibromochloromethane	. <	5.0 1,2-Dichlorobenzene < 5.0	
1,1-Dichloroethane		400 1,3-Dichlorobenzene	
1,2-Dichloroethane	<	5.0 l,4-Dichlorobenzene	
1,1-Dichloroethene		36 -	

SEQUOIA ANALYTICAL LABORATORY

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Arthur G. Burton Laboratory Director

នាន

Date Sampled: 08/28/87
Date Received: 08/31/87
Date Extracted: 09/04/87
Date Reported: 09/16/87
Project No. JCO-104H

Sample Number

7082430

#### Sample Description

Water, V-4

### PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4-Dimethylphenol	< 1
2,4-Dinitrophenol	< 1
2-Methyl-4,6-dinitrophenol	< 1
2-Nitrophenol	< 1
4-Nitrophenol	< 1
Pentachlorophenol	< 1
Phenol	< 1
2.4.6-Trichlorophenol	< 1

NOTE: Method 604 of the EPA was used for this analysis.

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082430

Sample Description

Water, V-4

#### ANALYSIS

Methanol, ppm	< 1
Ethanol, ppm	< 1
Isopropyl Alcohol, ppm	< 1
Acetone, ppm	< 1
Methyl Ethyl Ketone, ppb	< 5
Xylene, ppb	< 5

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082431

### Sample Description

Water, V-5

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	.00	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<1	.00	1,2-Dichloropropane	<	0.5
Benzene	<	0.5	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene	<	0.5	1,1,1-Trichloroethane	<	0.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform	<	0.5	Toluene	<	0.5
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane	<	0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	<	0.5
l,l-Dichloroethene	<	0.2	•		

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/04/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082431

#### Sample Description

Water, V-5

### PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4-Dimethylphenol	< 1
2,4-Dinitrophenol	< 1
2-Methyl-4,6-dinitrophenol	< 1
2-Nitrophenol	< 1
4-Nitrophenol	< 1
Pentachlorophenol	< 1
Phenol	< 1
2,4,6-Trichlorophenol	< 1

NOTE: Method 604 of the EPA was used for this analysis.

SEQUOIA ANALYTICAL LABORATORY



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082431

Sample Description

Water, V-5

#### ANALYSIS

Methanol, ppm	< 1
Ethanol, ppm	< 1
Isopropyl Alcohol, ppm	< 1
Acetone, ppm	< 1
Methyl Ethyl Ketone, ppb	< 0.5
Xylene, ppb	< 0.5

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

### Sample Number

7082432

### Sample Description

Water, V-6

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	.00	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<1	.00	1,2-Dichloropropane	<	0.5
Benzene	<	0.5	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene	<	0.5	1,1,1-Trichloroethane		2.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform	<	0.5	Toluene	<	0.5
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane	<	0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	<	0.5
l,l-Dichloroethene	<	0.2			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 08/28/87
Date Received: 08/31/87
Date Extracted: 09/04/87
Date Reported: 09/16/87
Project No. JCO-104H

Sample Number

7082432

Sample Description

Water, V-6

### PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4-Dimethylphenol	< 1
2,4-Dinitrophenol	< 1
2-Methyl-4,6-dinitrophenol	< 1
2-Nitrophenol	< 1
4-Nitrophenol	< 1
Pentachlorophenol	< 1
Phenol	< 1
2.4.6-Trichlorophenol	< 1

NOTE: Method 604 of the EPA was used for this analysis.

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082432

### Sample Description

Water, V-6

#### ANALYSIS

Methanol, ppm	< 1
Ethanol, ppm	< 1
Isopropyl Alcohol, ppm	< 1
Acetone, ppm	< 1
Methyl Ethyl Ketone, ppb	< 0.5
Xylene, ppb	< 0.5

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

Sample Description

7082433

Water, V-7

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride	<	0.5
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	1,1,1-Trichloroethane		16
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride	<	0.5
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane	24	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	< 0.5	l,4-Dichlorobenzene	<	0.5
1,1-Dichloroethene	1.9			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/04/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082433 Sample Description
Water, V-7

## PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4-Dimethylphenol	< 1
2,4-Dinitrophenol	< 1
2-Methyl-4,6-dinitrophenol	< 1
2-Nitrophenol	< 1
4-Nitrophenol	< 1
Pentachlorophenol	< 1
Phenol	< 1
2.4.6-Trichlorophenol	< 1

NOTE: Method 604 of the EPA was used for this analysis.

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082433

Sample Description
Water, V-7

#### ANALYSIS

Methanol, ppm	< 1
Ethanol, ppm	< 1
Isopropyl Alcohol, ppm	< 1
Acetone, ppm	< 1
Methyl Ethyl Ketone, ppb	< 0.5
Xylene, ppb	< 0.5

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082434

### Sample Description

Water, I-1

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	.00	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<1	.00	1,2-Dichloropropane	<	0.5
Benzene	<	0.5	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachlorgethene	`	0.5
Chlorobenzene	<	0.5	1,1,1-Trichloroethane	•	1.9
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform	<	0.5	Toluene	~	0.5
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	`	0.5
1,1-Dichloroethane		2.3	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	ζ.	0.5
l,l-Dichloroethene	<	0.2		•	- , -

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 08/28/87
Date Received: 08/31/87
Date Extracted: 09/04/87
Date Reported: 09/16/87
Project No. JCO-104H

#### Sample Number

7082434

#### Sample Description

Water, I-l

## PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4-Dimethylphenol	< 1
2,4-Dinitrophenol	< 1
2-Methyl-4,6-dinitrophenol	< 1
2-Nitrophenol	< 1
4-Nitrophenol	< 1
Pentachlorophenol	< 1
Phenol	< 1
2.4.6-Trichlorophenol	< 1

NOTE: Method 604 of the EPA was used for this analysis.

SEQUOIA ANALYTICAL LABORATORY



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number

7082434

Sample Description
Water, I-l

### ANALYSIS

Methanol, ppm	< 1
Ethanol, ppm	< 1
Isopropyl Alcohol, ppm	< 1
Acetone, ppm	< 1
Methyl Ethyl Ketone, ppb	< 0.5
Xylene, ppb	< 0.5

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/09/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082435

Sample Description
Water, I-2

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride	<	0.5
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	1,1,1-Trichloroethane		6.8
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride	<	0.5
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	< .	0.5
l,l-Dichloroethane	14	1,3-Dichlorobenzene	<	0.5
l,2-Dichloroethane	< 0.5	1,4-Dichlorobenzene	<	0.5
l,l-Dichloroethene	7.1			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Method 624 of the EPA was used for this analysis.

Date Sampled: 08/28/87
Date Received: 08/31/87
Date Extracted: 09/09/87
Date Reported: 09/16/87

Project No. JCO-104H

Sample Number

7082435

Sample Description

Water, I-2

- Open Scan NON-PRIORITY POLLUTANTS
VOLATILE ORGANIC COMPOUNDS
results in ppb

No additional peaks > 10 ppb were detected for identification by NBS spectral library.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

sls

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/09/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082436 Sample Description
Water, I-3

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	< 1	.00	trans-1,2-Dichloroethene	<	0.5
	-			`	0.5
Acrylonitrile	<1	.00	1,2-Dichloropropane	<	0.5
Benzene	<	0.5	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene	<	0.5	1,1,1-Trichloroethane	<	0.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform	<	0.5	Toluene	<	0.5
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane	<	0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	<	0.5
l.l-Dichloroethene.	′	0.2			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

NOTE: Method 624 of the EPA was used for this analysis.



Date Sampled: 08/28/87
Date Received: 08/31/87
Date Extracted: 09/09/87
Date Reported: 09/16/87

Project No. JCO-104H

Sample Number

7082436

Sample Description

Water, I-3

- Open Scan NON-PRIORITY POLLUTANTS
VOLATILE ORGANIC COMPOUNDS
results in ppb

No additional peaks > 10 ppb were detected for identification by NBS spectral library.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

sls



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082438 Sample Description
Water, Field Blank

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	00	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<1	00	1,2-Dichloropropane	<	0.5
Benzene	<	0.5	1,3-Dichloropropene	<	0.5
'Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene	<	0.5	1,1,1-Trichloroethane	<	0.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform	<	0.5	Toluene	<	0.5
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
l,1-Dichloroethane	<	0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	<	0.5
l,l-Dichloroethene	<	0.2			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Methods 601 & 602 of the EPA were used for this analysis.



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082438

Sample Description
Water, Field Blank

### ANALYSIS

Methyl Ethyl Ketone, ppm

< 0.5

Xylenes

< 0.5

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director



Date Sampled: 08/28/87 Date Received: 08/31/87 Date Extracted: 09/11/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082439

Sample Description Water, Method Blank

### PRIORITY POLLUTANTS

### VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	.00	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<1	.00	1,2-Dichloropropane	<	0.5
Benzene	<	0.5	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene	<	0.5	1,1,1-Trichloroethane	<	0.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform	<	0.5	Toluene	`	0.5
Chloromethane	<	0.5	Vinyl chloride	`	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	`	0.5
1,1-Dichloroethane	<	0.5	1,3-Dichlorobenzene	`	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	`	0.5
l,l-Dichloroethene	<	0.2		•	

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton

Laboratory Director

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/16/87 Project No. JCO-104H

Sample Number 7082439

Sample Description
Water, Method Blank

### ANALYSIS

Methyl Ethyl Ketone, ppm

< 0.5

Xylenes

< 0.5

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

### **INCORPORATED**

#### **ANALYSIS** RESEARCH

07 October 1987

Wahler Associates 1023 Corporation Way Palo Alto, CA 94303

File No. 987125 A-E

Attn: Mr. Bob Breynaert

Re: Two water samples and three water blanks as labeled below for EPA methods 601, 602 plus Methyl Ethyl Keytone and Xylene. C) Field Blank (8:00);

A) V-2; D) Field Blank (8:15);

B)  $V-\bar{4}$ ;

E) Method Blank

Received: 9-28-87

#### ANALYSIS

ANRESCO #	SAMPLE #	RESULTS	<del></del>	<del></del>
	0	EPA-601		
987125A	V-2	Chloroethane Methylene Chloride 1,1 Dichloroethene 1,1 Dichloroethane 1,1,1 Trichloroethane Chlorobenzene	26 4600 76 700 500 37	ppb ppb ppb ppb ppb
		EPA-602		
	. V-2	Benzene Toluene Chlorobenzene Methyle Ethyl Keytone Xylene	7 200 37 27 44	ppb ppb ppb ppb
		EPA-601		
987125B	V-4	Chloroethane Methylene Chloride 1,1 Dichloroethene 1,1 Dichloroethane 1,1,1 Trichloroethane Chlorobenzene 1,2 Dichloroethane	59 3 28 1000 20 8	ppb ppb ppb ppb ppb ppb
		EPA-602		
		Toluene Chlorobenzene	17 8	ppb ppb

File No. 987125 A-C

Wahler Associates 06 October 1987 page 2.

ANRESCO #	SAMPLE #	RESULTS	
987125C		EPA-601 EPA-602 MEK, Xylene	None Detected None Detected None Detected
987125D		Same as 987175C	
987125E		Same as 987175C	

Limit of Detection on all compounds listed in methods 601 & 602 but not detected in these samples is estimated to be 10 ppb or less.

Spike Recoveries:

Sample V-4 was spiked at a level of 10 ppb with methylene chloride and toluene.

Recovery MeCl₂ = 90%Recovery Toluene = 75%

Samples were not filtered.

Reported by,

ANRESCO, INC.

Mary Mesics

Senior Chemist

Eric Tam

Senior Chemist

MM/ET:sc

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number	Sample Description Water,	Detection Limit ppm	Total Hydrocarbons as Paint Thinner ppm
7092015	V-1	1	< 1.0
7092016	V-2	1	< 1.0
7092017	V-3	1	< 1.0
7092018	V-4	1 .	< 1.0
7092019	V-5	1	< 1.0
7092020	V-6	1	< 1.0
7092021	V-7	1	< 1.0
7092022	I-1	1	< 1.0
7092023	I-2	1	< 1.0
7092024	I-3	1	< 1.0

NOTE: Analysis was performed using EPA methods 3550 and 8015.

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number

7092015

### Sample Description

Water, V-1

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	00	trans-1,2-Dichloroethene		1.4
Acrylonitrile	<1	00	1,2-Dichloropropane	<	0.5
Benzene	<	0.5	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene	<	0.5	1,1,1-Trichloroethane	<	0.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	<	0.5
Chloroform	<	0.5	Toluene	<	0.5
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane		3.9	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	<	0.5
1.1-Dichloroethene		0.58			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton
Laboratory Director

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/08/87
Date Reported: 10/13/87

Project No. JCO-104H

Sample Number 7092015 Sample Description
Water, V-1

## PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	<	10
2-Chlorophenol	<	10
2,4-Dichlorophenol	<	10
2,4-Dimethylphenol	<	10
2,4-Dinitrophenol<	<	10
2-Methyl-4,6-dinitrophenol	<	10
2-Nitrophenol	<	10
4-Nitrophenol	<	10
Pentachlorophenol	< -	10
Phenol	< .	10
2,4,6-Trichlorophenol	<	10

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

<50

Sample Number 7092015	Sample Description Water, V-1
	YSIS s in ppb
Methyl-Ethyl Ketone	< 0.5
Xylenes	< 0.5
Methanol	<50
Ethanol	<50
Isopropanol	<50

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton
Laboratory Director

Acetone

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/13/87

Date Reported:

Project No. JCO-104H

Sample Number 7092016

Sample Description
Water, V-2

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	50
Acrylonitrile	<100	1,2-Dichloropropane	<	50
Benzene	< 50	1,3-Dichloropropene	<	50
Bromomethane	< 50	Ethylbenzene	<	50
Bromodichloromethane	< 50	Methylene chloride		220
Bromoform	< 50	1,1,2,2-Tetrachloroethane	<	50
Carbon tetrachloride	< 50	Tetrachloroethene	<	50
Chlorobenzene	< 50	1,1,1-Trichloroethane		630
Chloroethane	< 50	1,1,2-Trichloroethane	<	50
2-Chloroethylvinyl ether	< 50	Trichloroethene	<	50
Chloroform	< 50	Toluene	<	50
Chloromethane	< 50	Vinyl chloride	<	50
Dibromochloromethane	< 50	1,2-Dichlorobenzene	<	50
l,l-Dichloroethane	490	1,3-Dichlorobenzene	<	50
1,2-Dichloroethane	< 50	1,4-Dichlorobenzene	<	50
l,l-Dichloroethene	< 50			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton
Laboratory Director

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/08/87
Date Reported: 10/13/87

Project No. JCO-104H

### Sample Number

7092016

### Sample Description

Water, V-2

## PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	<	10
2-Chlorophenol	<	10
2,4-Dichlorophenol	<	10
2,4-Dimethylphenol	<	10
2,4-Dinitrophenol	<	10
2-Methyl-4,6-dinitrophenol	<	10
2-Nitrophenol	<	10
4-Nitrophenol	<	10
Pentachlorophenol	·<	10
Phenol	<	10
2,4,6-Trichlorophenol	<	10

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number 7092016 Sample Description
Water, V-2

# ANALYSIS results in ppb

Methyl-Ethyl Ketone	< 0.5
Xylenes	26
Methanol	<50
Ethanol	<50
Isopropanol	<50
Acetone	950

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number 7092017

Sample Description
Water, V-3

#### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene		9.1
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride		12
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	l,l,l-Trichloroethane		1.1
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride		0.68
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	<	0.5
l,1-Dichloroethane	6.6	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	< 0.5	1,4-Dichlorobenzene	<	0.5
l,1-Dichloroethene	0.76			_

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/08/87
Date Reported: 10/13/87
Project No. JCO-104H

Sample Number

7092017

### Sample Description

Water, V-3

## PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol <	10
2-Chlorophenol<	10
2,4-Dichlorophenol<	10
2,4-Dimethylphenol<	10
2,4-Dinitrophenol <	10
2-Methyl-4,6-dinitrophenol	10
2-Nitrophenol <	10
4-Nitrophenol <	10
Pentachlorophenol <	10
Phenol <	10
2,4,6-Trichlorophenol	10

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Reported: 10/13/87
Project No. JCO-104H

Sample Number	Sample Description
7092017	Water, V-3
ANALYSIS results in p	pb
Methyl-Ethyl Ketone	< 0.5
Xylenes	< 0.5
Methanol	<50
Ethanol	<50
Isopropanol	. <50
Acetone	<50

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number 7092018 Sample Description

Water, V-4

### PRIORITY POLLUTANTS

## VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	00	trans-1,2-Dichloroethene	<	5
Acrylonitrile	<1	00	1,2-Dichloropropane		5
Benzene	<	5	1,3-Dichloropropene	<	5
Bromomethane	<	5	Ethylbenzene		5
Bromodichloromethane	<	5	Methylene chloride	<	5
Bromoform	<	5	1,1,2,2-Tetrachloroethane		5
Carbon tetrachloride	<	5	Tetrachloroethene		5
Chlorobenzene	<	5	1,1,1-Trichloroethane		30
Chloroethane		39	l,1,2-Trichloroethane	<	5
2-Chloroethylvinyl ether		5	Trichloroethene		5
Chloroform		5	Toluene		5
Chloromethane		5	Vinyl chloride	<	5
Dibromochloromethane	<	5	1,2-Dichlorobenzene	<	5
l,l-Dichloroethane		310	1,3-Dichlorobenzene	<	5
1,2-Dichloroethane	<	5	1,4-Dichlorobenzene	<	5
l.l-Dichloroethene		14	·		

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton

Laboratory Director

NOTE: Methods 601 & 602 of the EPA were used for this analysis.

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/08/87
Date Reported: 10/13/87

Project No. JCO-104H

### Sample Number

7092018

#### Sample Description

Water, V-4

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	<	10
2-Chlorophenol	<	10
2,4-Dichlorophenol	<	10
2,4-Dimethylphenol	<	10
2,4-Dinitrophenol	<	10
2-Methyl-4,6-dinitrophenol	<	10
2-Nitrophenol	<	10
4-Nitrophenol	<	10
Pentachlorophenol	<	10
Phenol	<	10
2.4.6-Trichlorophenol	_	10

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number		Sample Description
7092018		Water, V-4
	ANALYSIS results in ppb	
Methyl-Ethyl Ketone		< 0.5
Xylenes		< 0.5
Methanol		<50
Ethanol		<50
Isopropanol		<50
Acetone		<50

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number 7092019 Sample Description

Water, V-5

PRIORITY POLLUTANTS

VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride	<	0.5
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	1,1,1-Trichloroethane	<	0.5
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride	<	0.5
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane	< 0.5	1,3-Dichlorobenzene	<	0.5
l,2-Dichloroethane	< 0.5	1,4-Dichlorobenzene	<	0.5
l,l-Dichloroethene	< 0.2			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/08/87
Date Reported: 10/13/87
Project No. JCO-104H

Sample Number 7092019 Sample Description

Water, V-5

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	<	10
2-Chlorophenol	<	10
2,4-Dichlorophenol	<	10
2,4-Dimethylphenol	<	10
2,4-Dinitrophenol	<	10
2-Methyl-4,6-dinitrophenol	<	10
2-Nitrophenol	<	10
4-Nitrophenol		
Pentachlorophenol	<	10
Phenol	<	10
2,4,6-Trichlorophenol	<	10

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

<50

Sample Number	Sample Description
7092019	Water, V-5
ANALYSIS results in ppb	
Methyl-Ethyl Ketone	< 0.5
Xylenes	< 0.5
Methanol	<50
Ethanol	<50
Isopropanol	<50

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Acetone

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number 7092020 Sample Description
Water, V-6

#### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<1	00	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<1	00	1,2-Dichloropropane	<	0.5
Benzene		1.9	1,3-Dichloropropene	<	0.5
Bromomethane	<	0.5	Ethylbenzene	<	0.5
Bromodichloromethane	<	0.5	Methylene chloride	<	0.5
Bromoform	<	0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	<	0.5	Tetrachloroethene	<	0.5
Chlorobenzene	<	0.5	l,l,l-Trichloroethane		4.5
Chloroethane	<	0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	<	0.5	Trichloroethene	.<	0.5
Chloroform	<	0.5	Toluene	<	0.5
Chloromethane	<	0.5	Vinyl chloride	<	0.5
Dibromochloromethane	<	0.5	1,2-Dichlorobenzene	<	0.5
1,1-Dichloroethane	<	0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	<	0.5	1,4-Dichlorobenzene	<	0.5
1.1-Dichloroethene	-	0.2			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton
Laboratory Director

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/08/87
Date Reported: 10/13/87
Project No. JCO-104H

Sample Number 7092020

Sample Description

Water, V-6

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	<	10
2-Chlorophenol	<	10
2,4-Dichlorophenol	<	10
2,4-Dimethylphenol	<	10
2,4-Dinitrophenol	<	10
2-Methyl-4,6-dinitrophenol	<	10
2-Nitrophenol	<	10
4-Nitrophenol	< .	10
Pentachlorophenol	<	10
Phenol	<	10
2,4,6-Trichlorophenol	<	10

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number		Sample Description
7092020		Water, V-6
	ANALYSIS results in ppb	
Methyl-Ethyl Ketone		< 0.5
Xylenes		< 0.5
Methanol		<50
Ethanol		<50
Isopropanol		<50
Acetone		<50

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number

7092021

Sample Description

Water, V-7

#### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	,	Λ ε
			<	0.5
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride	<	0.5
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	1,1,1-Trichloroethane		23
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride	<	0.5
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	<	0.5
1,1-Dichloroethane	19	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	< 0.5	1,4-Dichlorobenzene	<	0.5
l,l-Dichloroethene	2 4		-	

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/08/87
Date Reported: 10/13/87
Project No. JCO-104H

Sample Number 7092021

Sample Description
Water, V-7

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol < 10	
2-Chlorophenol	
2,4-Dichlorophenol < 10	
2,4-Dimethy1phenol < 10	
2,4-Dinitrophenol	
2-Methyl-4,6-dinitrophenol	
2-Nitrophenol < 10	
4-Nitrophenol < 10	ı
Pentachlorophenol < 10	l
Phenol < 10	)
2,4,6-Trichlorophenol 10	

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number		Sample Description
7092021		Water, V-7
	ANALYSIS results in ppb	
Methyl-Ethyl Ketone		< 0.5
Xylenes		< 0.5
Methanol		. <50
Ethanol		<50
Isopropanol		<50
Acetone		<50

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number 7092022 Sample Description
Water I-l

#### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride	<	0.5
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	1,1,1-Trichloroethane		2.0
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride	<	0.5
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane	3.0	1,3-Dichlorobenzene	<	0.5
l,2-Dichloroethane	< 0.5	1,4-Dichlorobenzene	<	0.5
1,1-Dichloroethene	< 0.2	:		

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/09/87
Date Reported: 10/13/87

Project No. JCO-104H

Sample Number

7092022

Sample Description
Water I-1

## PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	<	10
2-Chlorophenol	<	10
2,4-Dichlorophenol	<	10
2,4-Dimethylphenol	<	10
2,4-Dinitrophenol	<	10
2-Methyl-4,6-dinitrophenol	<	10
2-Nitrophenol	<	10
4-Ni trophenol	<	10
Pentachlorophenol	<	10
Phenol	<	10
2,4,6-Trichlorophenol	<	10

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number		Sample Description
7092022		Water, I-l
	ANALYSIS results in ppb	
Methyl-Ethyl Ketone		< 0.5
Xylenes		< 0.5
Methanol	•	<50
Ethanol		<50
Isopropanol		<50
Acetone		<50

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number

7092023

Sample Description
Water, 1-2

#### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride	<	0.5
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	1,1,1-Trichloroethane	<	0.5
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride	<	0.5
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	<	0.5
l,1-Dichloroethane	< 0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	< 0.5	1,4-Dichlorobenzene	<	0.5
l,l-Dichloroethene	< 0.2			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton
Laboratory Director

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/09/87
Date Reported: 10/13/87
Project No. JCO-104H

Sample Number

7092023

Sample Description

Water, I-2

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	<	10
2-Chlorophenol	<	10
2,4-Dichlorophenol	<	10
2,4-Dimethylphenol	<	10
2,4-Dinitrophenol	<	10
2-Methyl-4,6-dinitrophenol	<	10
2-Nitrophenol	<	10
4-Nitrophenol	<	10
Pentachlorophenol	<	10
Phenol	<	10
2,4,6-Trichlorophenol	<	10

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number		Sample Description
7092023		Water, I-2
·	ANALYSIS	
	results in ppb	•
	·	
Methyl-Ethyl Ketone		< 0.5
Xylenes		< 0.5
Methanol		<50
Ethanol		<50
Isopropanol		<50
Acetone		<50

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

#### Sample Number

7092024

#### Sample Description

Water, I-3

#### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	0.5
Acrylonitrile	<100	1,2-Dichloropropane	<	0.5
Benzene	< 0.5	1,3-Dichloropropene	<	0.5
Bromomethane	< 0.5	Ethylbenzene	<	0.5
Bromodichloromethane	< 0.5	Methylene chloride	<	0.5
Bromoform	< 0.5	1,1,2,2-Tetrachloroethane	<	0.5
Carbon tetrachloride	< 0.5	Tetrachloroethene	<	0.5
Chlorobenzene	< 0.5	l,l,l-Trichloroethane	<	0.5
Chloroethane	< 0.5	1,1,2-Trichloroethane	<	0.5
2-Chloroethylvinyl ether	< 0.5	Trichloroethene	<	0.5
Chloroform	< 0.5	Toluene	<	0.5
Chloromethane	< 0.5	Vinyl chloride	<	0:5
Dibromochloromethane	< 0.5	1,2-Dichlorobenzene	<	0.5
l,l-Dichloroethane	< 0.5	1,3-Dichlorobenzene	<	0.5
1,2-Dichloroethane	< 0.5	l,4-Dichlorobenzene	<	0.5
l,l-Dichloroethene	< 0.2			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton
Laboratory Director

Date Sampled: 09/25/87
Date Received: 09/28/87
Date Extracted: 10/09/87
Date Reported: 10/13/87

Project No. JCO-104H

Sample Number

7092024

Sample Description

Water, I-3

# PHENOLIC COMPOUNDS results in ppb

4-Chloro-3-methylphenol	
2-Chlorophenol < 10	
2,4-Dichlorophenol	
2,4-Dimethylphenol < 10	
2,4-Dinitrophenol	
2-Methyl-4,6-dinitrophenol	
2-Nitrophenol	
4-Nitrophenol	
Pentachlorophenol	
Phenol	
2.4.6-Trichlorophenol	

SEQUOIA ANALYTICAL LABORATORY

NOTE: Method 625 of the EPA was used for this analysis.



Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number	Sample Description
7092024	Water, I-3
ANALYSIS	·
results in p	pb
Motherl Ethirl Katono	. 0 .

Methyl-Ethyl Ketone	< 0.5
Xylenes	< 0.5
Methanol	<50
Ethanol	<50
Isopropanol	<50
Acetone	<50

SEQUOIA ANALYTICAL LABORATORY

Date Sampled: 09/25/87 Date Received: 09/28/87 Date Extracted: 10/09/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number

7092025

Sample Description

Water, V-4, Duplicate

#### PRIORITY POLLUTANTS

# VOLATILE ORGANIC COMPOUNDS results in ppb

Acrolein	<100	trans-1,2-Dichloroethene	<	5
Acrylonitrile	<100	1,2-Dichloropropane	<	5
Benzene	< 5	1,3-Dichloropropene		5
Bromomethane	< 5	Ethylbenzene		5
Bromodichloromethane	< 5	Methylene chloride	<	5
Bromoform	< 5	1,1,2,2-Tetrachloroethane	<	5
Carbon tetrachloride	< 5	Tetrachloroethene	<	5
Chlorobenzene	< 5	l,l,l-Trichloroethane		31
Chloroethane	63	1,1,2-Trichloroethane	<	5
2-Chloroethylvinyl ether	< 5	Trichloroethene	<	5
Chloroform	< 5	Toluene	<	5
Chloromethane	< 5	Vinyl chloride	<	5
Dibromochloromethane	< 5	1,2-Dichlorobenzene		· 5
l,l-Dichloroethane	300	1,3-Dichlorobenzene	<	5
1,2-Dichloroethane	< 5	l,4-Dichlorobenzene		5
1,1-Dichloroethene	16			

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director



Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

Sample Number 7092025

Sample Description
Water, V-4, Duplicate

ANALYSIS results in ppb

Methyl-Ethyl Ketone

< 0.5

Xylenes

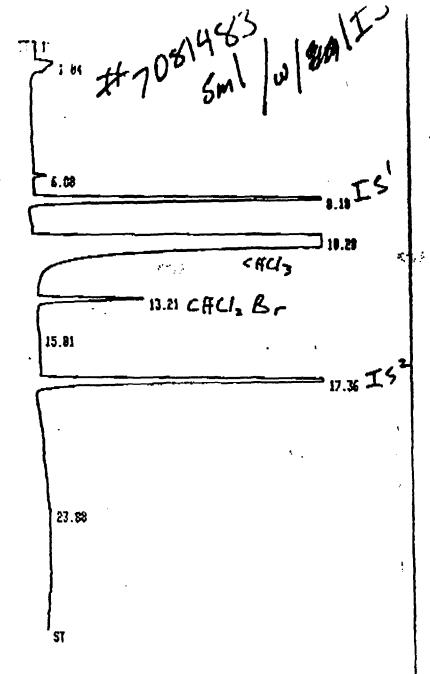
< 0.5

SEQUOIA ANALYTICAL LABORATORY

APPENDIX D

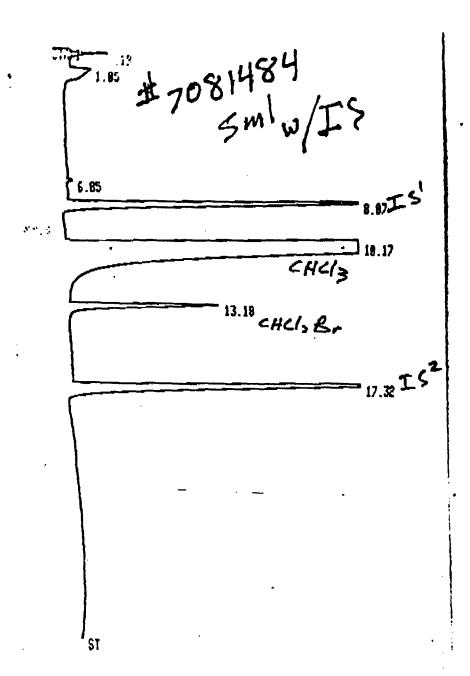
•

Date Sampled: 08/20/87 Date Received: 08/20/87 Date Reported: 09/10/87 Project No. JCO-104H


#### Q.C. DATA REPORT

Sample Number	Original <u>Result</u> µg/L	Original <u>Result</u> µg/L	<pre>% Deviation</pre>
7081826	1.8	1.4	12
Sample Number	Original <u>Result</u> µg/L	Spike Spi Added Resu µg/L µg/	11t % Recovery
7081826	1.5	2.0 3.	.2 85

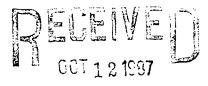
SEQUOIA ANALYTICAL LABORATORY


Arthur G. Burton Laboratory Director

mpr



RUN # ID -	297	Ş	EP/03/87	09:27:54
ISTD RT 1.84 6.88 8.16 18.20 13.21 15.01	AREA 64810 11747 602680 3.3177E+07 150320 1552	TYPE PP PB YB PB BB PY	CAL# 1 24 3 5 6	AMOUNT 9.898 9.351 39.998 464.119 4.889 9.115
17.36 23.88	75058 <b>0</b> <b>3834</b>	AB 86	8r	41.475 0.000


TOTAL AREA= 3.4762E+07 ISTD AMT= 3.0000E+01 BUL FACTOR= 1.2600E+00



0.19 26467 BB 0.800	RUN # 2 ID -	298 2	Ş	EP/03/ <b>87</b>	10:03:27
6.85 5144 BB 1 0.158 8.07 587090 PB 2L 30.000 10.17 3.3660E+07 PB 3 483.370 13.18 214890 PB 5 7.178	RT 0.19 1.85 6.85 8.07 10.17 13.16	25467 73099 5144 587090 3.3660E+07 214890	88 89 68 98 98 98	1 2 3 5	AMOUNT 8.808 9.808 6.158 30.888 483.378 2.175 41.958

TOTAL AREA= 3.5386E+87 1810 ART= 3.0000E+01 BUL FACTOR= 1.0000E+00

m) reality

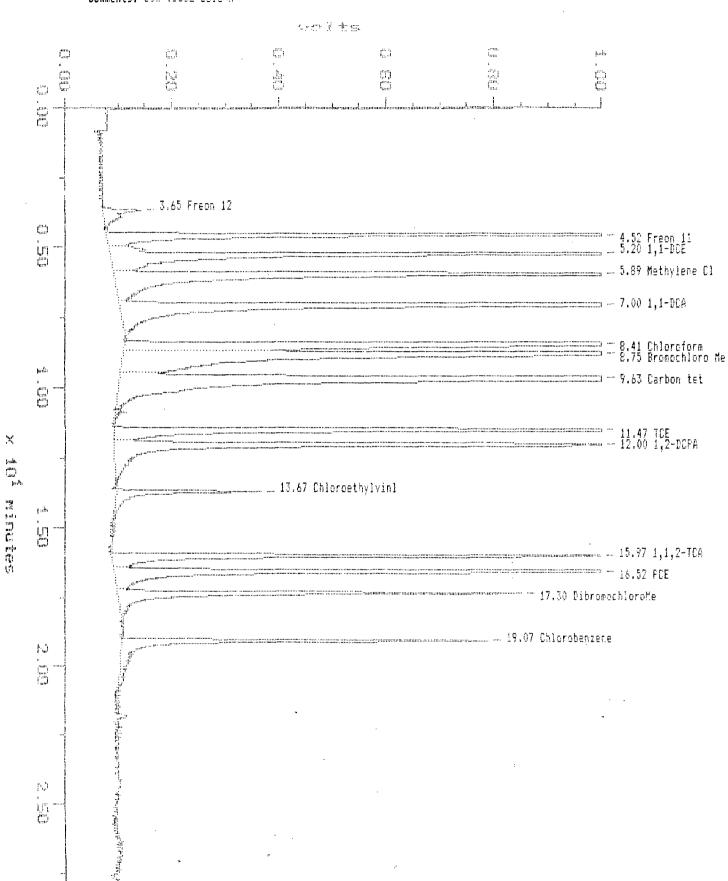


# WAHLER THREE POINT CALIBRATION REPORT ASSOCIATES

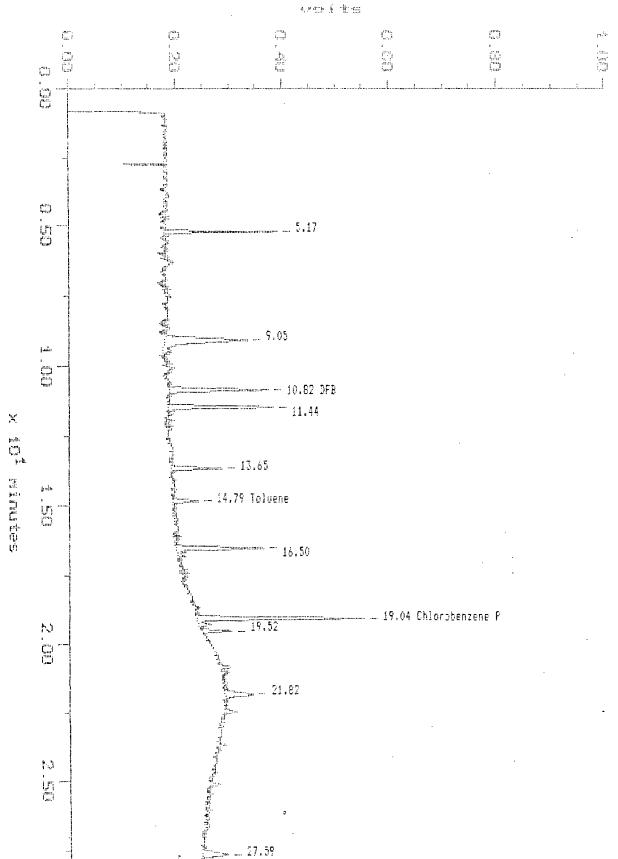
Matrix : WATER Date analyzed : 9-4-87 Analyst : Ma Supervisor: 55

#### CALIBRATION FACTOR

Compound Name	5PPB	10PPB	15PPB	AVG	RSD
601 COMPOUNDS					
DICHLORODIFLOUROMETHANE	1.84E+05	7.94E+04	1.40E+05	1.34E+05	32%
TRICHLOROFLOUROMETHANE		1.19E+06		1.10E+06	9%
1,1 DICHLOROETHENE	1.40E+06	1.69E+06	1.52E+06	1.54E+06	8%
METHYLENE CHLORIDE	1.90E+06	2.10E+06	1.79E+06	1.93E+06	7%
1,1 DICHLOROETHANE	1.85E+06	2.05E+06	1.93E+06	1.94E+06	4%
CHLOROFORM	2.23E+06	3.25E+06	2.31E+06	2.60E+06	18%
CARBON TETRACHLORIDE	3.12E+06	3.27E+06	3.01E+06	3.13E+06	3%
TRICHLOROETHENE		1.32E+06		1.23E+06	7%
1,2 DICHLOROPROPANE	1.11E+06	1.26E+06	1.25E+06	1.21E+06	6%
CHLOROETHYLVYNYLE ETHER		2.96E+05		2.68E+05	9%
1,1,2 TRICHLOROETHANE	7.69E+05	9.40E+05	9.40E+05	8.83E+05	9%
TETRACHLOROETHENE		1.55E+06		1.44E+06	7%
DIBROMOCHLOROMETHANE		7.25E+05		7.05E+05	11%
CHLOROBENZENE		5.74E+05		5.61E+05	2%
VINYL CHLORIDE+CHLOROMETH		1.13E+06		1.12E+06	13%
BROMOMETHANE+CHLOROETHANE		1.16E+06		1.15E+06	12%
TRICHLOROTRIFLOUROETHANE		1.36E+06		1.31E+06	3%
TRANS 1,2 DICHLOROETHENE		2.31E+06		2.18E+06	6%
CIS 1,2 DICHLOROETHENE		2.25E+06		2.12E+06	4%
1,1,1 TRICHLOROETHANE		3.61E+06		3.64E+06	11%
1,2 DICHLOROETHANE		1.59E+06		1.34E+06	14%
BROMODICHLOROMETHANE		1.27E+06		1.23E+06	7%
CIS 1,3 DICHLOROPROPENE		1.60E+06		1.59E+06	2%
TRANS 1,2 DICHLOROPROPENE		7.67E+05		7.47E+05	11%
BROMOFORM		3.23E+05		2.90E+05	27%
TETRACHLOROETHANE		7.93E+05		7.55E+05	8%
1,3 DICHLOROBENZENE	6.65E+05		7.89E+05	7.50E+05	8%
1,4 DICHLOROBENZENE		8.89E+05		8.71E+05	1%
1,2 DICHLOROBENZENE	1.30E+05	8.26E+05	8.34E+05	7.97E+05	6%
602 COMPOUNDS	0 000.05	2.58E+05	0 400.00	0.007.05	504
CHLOROBENZENE BENZENE	2.89E+05	1.95E+05		2.62E+05 2.32E+05	8% 13%
TOLUENE					
ETHYLBENZENE	3.07E+05 2.71E+05	2.88E+05 2.60E+05	2.50E+05 2.30E+05	2.82E+05 2.54E+05	8% 7%
M+P-XYLENES	3.11E+05	2.95E+05	2.67E+05	2.91E+05	6%
O-XYLENE	2.60E+05	2.58E+05	2.43E+05	2.54E+05	3%
1,3 DICHLOROBENZENE	3.32E+05	3.49E+05	3.03E+05	3.28E+05	6%
1,4 DICHLOROBENZENE	3.08E+05		2.62E+05	2.93E+05	7%
1,2 DICHLOROBENZENE	2.91E+05	2.79E+05	2.55E+05	2.75E+05	5%


Duily Check Std A

Sample: PURSE 4+ 10FP5 Acquired: 08-SEP-87 8:00


Inj Vol: 5.00 ... Comments: 60m VOCGL Column

Channel: OI A Method: METHOD 601/602

Filename: STD0908A Operator: 985



Sample: FURGE A+ 10FFB Channel: FID A Filename: STD1908A
Acquired: 08-SEF-87 8:00 Method: METHOD 601/601 Operator: SRS
Inj Vol: 5.00
Comments: 60# VOCGL Column



#### MAXIMA CONCENTRATION REPORT

Printed: 8-SEF-1987 9:50:31

SAMPLE: PURBE A+ 10PPB

#9 in Method: METHOD 601/602 Acquirec: 8-SEP-1987 8:00 Rate: 3.846 points/sec Duration: 28.500 minutes

Operator: SRS

DETECTOR: 01 A

Type: UNKN

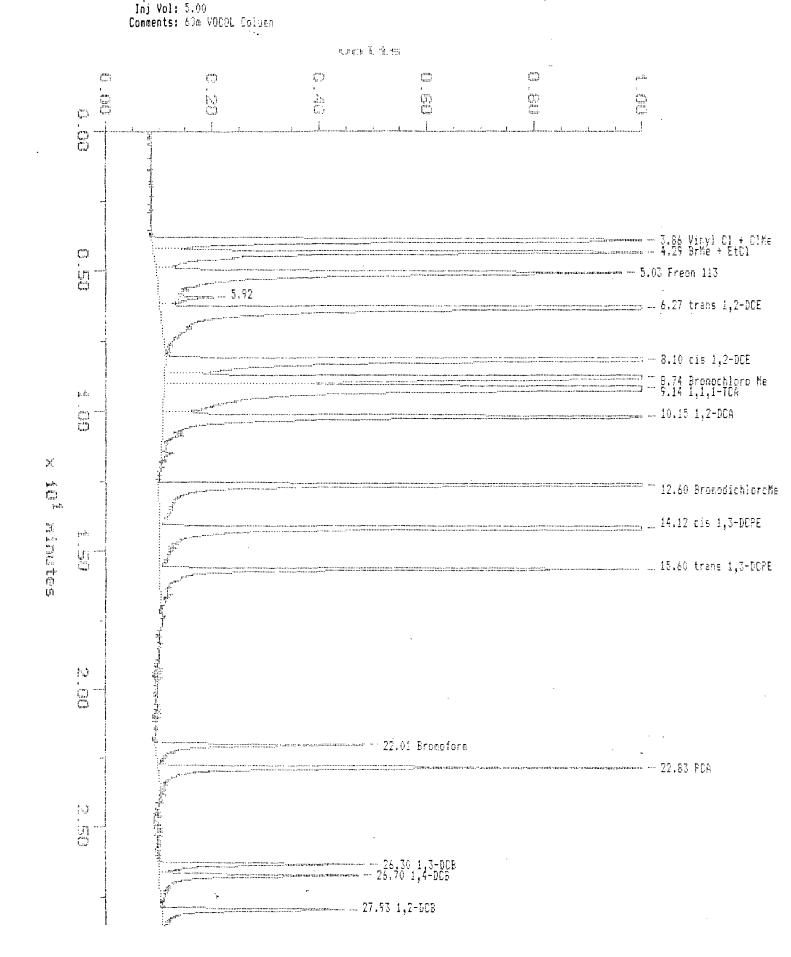
Instrument: Chromatograph i

Filename: STD0908A Index: Disk

PK	ID	Retention Time (minutes)	Туре	Peak Height (microvolts)	Peak Area (microvolt-sec)	Area Percent	Code	Base	Solution Conc	Component Name	4:6%
1	1	3.649	BP	70820	1130326	0.57	EXT	AREA	104.97	Freon 12	5.0
2	4	4.520	PP	1287682	9495035	4.83	EXT	AREA	8.22	Freon 11	18
3	Ь	5.196	PP	2195226	15052158	7.65	EXT	AREA	9.69	1,1-DCE	3.0
Ļ	7	5.893	PP	2663224	18781543	9.55	EXT	AREA	9.83	Kethylena Cl	2.0
5	7	7.003	PB	1978305	17539812	8.92	EXT	AREA	8.99	1,1-DCA	10
£	11	8.407	BP	2651165	20427872	10.39	EXT	AREA	8.73	Chlorofera	13
7	12	8.749	FF	2758655	25623732	13.03	EXT	AREA	85.34	Bromochloro Me (	
8	14	9.629	PB	2326429	26885498	13.67	EXT	AREA	8.57	Carbon tet	14
9	13	11.465	BP	1762859	12507449	6.41	EXT	AREA	9.98	TCE	0.2
10	19	11.999	PB	1367644	12298367	6.25	EXT	AREA	10.01	1,2-DCPA	Ð
11	21	13.667	BB	267022	2209862	1.12	EXT	AREA	8.21	Chloroethylvinl	18
12	25	15.948	BP	1230248	8787922	4.47	EXT	AREA	9.68	1,1,2-TCA	3.0
13	26	16.523	PP	1765574	13611881	6.92	EXT	AREA	9.34	PCE	7.c
14	27	17.303	PB	750496	6370479	3.24	EXT	AREA	6.88	DibromochloroMe	· ii
15	29	19.067	PB	679843	5811547	2.76	EXT	AREA	10.33	Chlorobenzene	3′c
TOTAL	.5			23775192	196633463				310.78		

DETECTOR: PID A

FK	ID	Retention Time (minutes)	Type	Peak Height (microvolts)	Peak Area (microvolt-sec)	Area Percent	Code	Base	Solution Conc	Component Name	90d:1
		5.174	BB	210756	924148	F = 7					
						8.57					
2		9.052	55	156145	2015190	18.65				è	
3	17	10.820	ĒВ	184333	1177984	10.92	EXT	AREA	£9.89 ·	DEP (2ml)	
4		11,444	BB	196232	1293452	11.99					
5		13.646	BB	94950	503803	4.67					
6	23	14.794	BE	47137	292888	2.71	EXT	AREA	Invelid-	<u>Tolu</u> ene-	
7		16.497	BB	163628	1153254	10.69					
8	26	19.038	BP	311682	2105476	19.52	EXT	AREA	8.45	Chlorobenzene P	15
7		19.517	FB	55337	314667	3.01					
10		21.818	55	51635	516464	4.79					


4,46 11 27.586 88 77.34 TOTALS 1519259 10788417

Channel: 81 A Doily Check 5th Brc

Sample: PURSE B-8 10FFB Acquired: 08-SEF-87

Method: METHED 601/602

Filename: STD0908B Operator: SRS



Sample: FURGE B+C 10FFE Channel: PID A
Acquired: 08-SEP-37 8:46. Method: METHOD 601/602
Inj Vol: 5.00
Comments: 60m VOCOL Column arch I tes ("")  $\{_{inn}^{mn}\}$ Ţ.,,, l.Fi L.Fi __ 5.15 - 10.82 DFB 7 palts |------| |------| |-----| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s  $[\cdot]_{i_{\mathbf{n}}}]$ 

-- 27.89 1,2-DOB (PID)

(0,1)Ļ Filename: STD0708B Operator: SRS

#### MAXIMA CONCENTRATION REPORT

Printed: 8-88P-1987 10:06:12

SAMPLE: PURSE B+C 10PPB

#10 in Method: METHOD 601/602 Acquired: E-SEP-1987 3:46 Rate: 3.246 points/sec Duration: 28.500 minutes

Operator: SRS

Type: UNKN

Instrument: Chromatograph 1

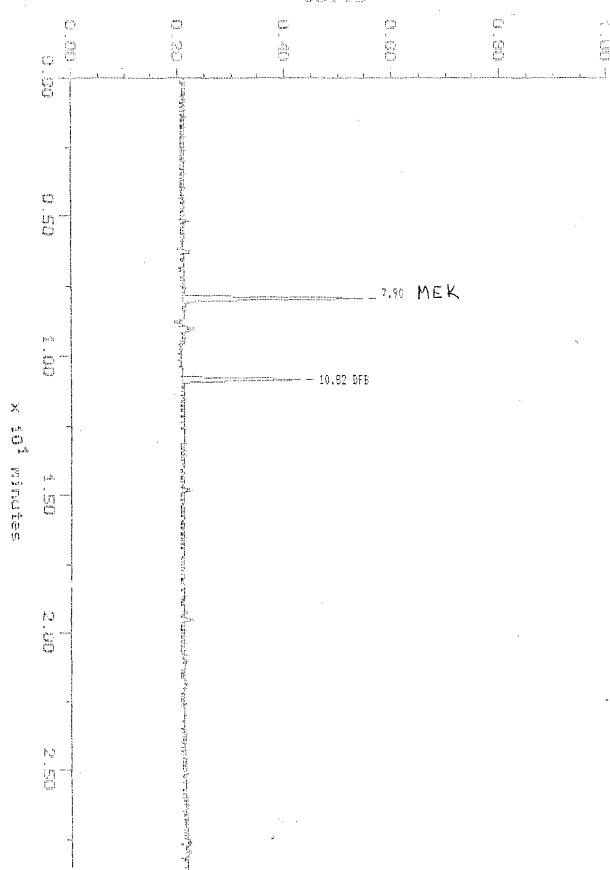
Filename: STD09088 Index: Disk

DETECTOR: QI A

PK	ID	Retention Time (minutes)	Туре	Peak Height (microvolts)	Peak Area (microvolt-sec)	Area Percent	Code	Base	Solution Conc	Component Name	%,1
	7	3.861	BP	1208871	11565631	5.65	EXT	AREA	17.69	Vinyl Cl + ClMe	1.5
2	3	4.286	PP PP	2183243	13068429	6.38	EXT	AREA	21.43	ErKe + EtCl	7.4
3	E	5.031	FP	866019	13954157	6,82	EXT	AREA	10.73	Freen 113	7.
4		5.915	 SS	59773	411215	0.20			20170	110011 210	' '
5	9	6.266	FB	2889489	21668423	10.58	EXT	AREA	10.15	trans 1,2-DCE	1.5
5	10	8.163	BF	2669865	21340174	10.42	EXT	AREA	10.09	cis 1,2-0CE	0.1
7	12	8.745	PP	3037807	22660968	11.07	EXT	AREA	75.47	Bronochloro Me	(sur)
8	13	9.143	PP	2488745	31042408	15.16	EXT	AREA	8.61	1,1,1-TCA	14
9	16	10.153	FB	1488758	13716288	6.70	EXT	AREA	10.50	1,2-DCA	5.
10	20	12.597	BP	1592624	12981279	6.34	EXT	AREA	10.25	BromodichloroMe	2.
11	22	14.118	PP	2115300	15822806	7.73	EXT	AREA	12.28	cis 1,3-DCPE	0.
12	24	15.600	PB	920781	73696 <b>9</b> 7	3.60	EXT	AREA	7.26	trans 1,3-DCPE	6.4
13	33	22.009	BP	390190	3132615	1.53	EXT	AREA	9.84	Brownform	1. 6
14	34	22.828	PB	991968	7291451	3.56	EXT	AREA	9.44	PCA	5.5
15	36	<b>26.</b> 303	₽₽	381449	2643702	1.29	EXT	AREA	3.42	1,3-DCB	3. ų
16	38	<b>26.7</b> 02	PB	367751	3245432	1.59	EXT	AREA	3.72	1,4-DCB	13
17	40	27.928	BB	33 <b>73</b> 02	2832884	1.38	EXT	AREA	3.47	1,2-DCB	5.2
TOTAL	.5			23989938	204747559		÷		226.33		

DETECTOR: FID A

PK	10	Retention Time (minutes)	Type	Peak Height (microvolts)	Peak Area (microvolt-sec)	Area Percent	Code	Base	Solution Conc	Component Name
		7 574		3467:	740674	0.40				
1		3.831	55	71936	702936	2.48			•	
2		5.148	BB	38054	253652	0.89				
3		6.244	BB	384903	1929517	6.80				
4		8.073	BE	214934	1240058	4.37				
5		9.035	<b>B</b> B	94631	1122538	3.76				
6		10.036	FB	311110	2269876	8.00				
7	17	10.820	88	249728	1730685	6.10	Eli	AREA	101.21	DEB (SUIT)
8		14.088	88	193352	1170997	4,13				, ,


								***			7-
	23	14.781	BB	409089	2 <b>9</b> 03 <b>6</b> 05	10.23	EXT	AREA	10.80	To]uane	d.H.
10		15.557	FE	145333	881835	3.04					
11	50	19.270	BF	387375	2603225	9.17	EXT	AREA	10.64	Ethvlbeniene	6.4
12		19,504	P5	811954	5610536	19.77					•
13		20.817	BB	329263	2636371	9.30					
14	<b>35</b>	26.264	BB	187864	1164139	4.10	EXT	AREA	3.60	1,3-DOB (PID)	10
15	37	26.672	88	172087	1133118	3.99	ΕXΙ	AREA	4,09	1,4-DCB (PID)	23
16	39	27.894	BB	146478	1038806	3.66	EXT	AREA	3.92	1,2-DOB (FID)	19
TOTA	LS			4210366	28373795				134.28		

Sample: MEK 250NE/UL Acquired: 08-3EF-87 10:47 Dilution: 1 : 1.000 Comments: 60m VOCOL Column

Channel: PID A Method: METHOD 601/802 Inj Vol: 5.00

Filename: STD09088 Operator: SRS





# MAXIMA CONCENTRATION REPORT

Printed: 8-SEP-1987 15:18:05

SAMPLE: MEK 250NG/UL

\$14 in Kethod: METHOD 601/602
 Acquired: 8-SEP-1987 10:47
 Rate: 3.846 points/sec

Duration: 28.500 minutes

Operator: SR3

Type: UNKN

Instrument: Chromatograph i

Filename: STD0908C Index: Disk

Dilution: 1.000

DETECTOR: OI A

PK	ID	Retention Time (minutes)	Type	Peak Height (microvolts)	Peak Area (microvolt-sec)	Area Percent	Code	Base	Solution Conc	Component Name
1	12	8.749	BE	2630526	23195880	100.00	EXT	AREA	77.25	Bromschlore Me
TOTAL	<b>.</b> S			2630526	23195890				77.25	

DETECTOR: PID A

PK	ID	Retention Time (minutes)	Type	Peak Height (microvolts)	Peak Area (microvolt-sec)	Area Percent	Code	Base	Solution Conc	Component Name
1		7.904	BB	335900	2387956	61.71			250	MEK
2	17	10.820	88	221763	1481468	38.29	EXT	AREA	66.64	DFB
TOTA	_5			557662	3869424				8á.64	

Sample: 8708113-01 Acquired: 08-85F-87 12:13 Dilution: 1 : 100.000 Comments: 60m VOCOL Column Channel: OI A Method: METHOD 601/602 Inj Vol: 5.00 Filename: 08113-1A Operator: SRS eren i 155 (".") 5.21 _____ 5.87 Mathylene Cl 

Can't Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner Inner

ti C

 $[\cdot]$ 

The Maxima Chromatography Workstation (c)1985 Dynamic Solutions Corporation

# MAXIMA CONCENTRATION REPORT

Printed: 8-8EP-1987 15:12:30

SAMPLE: 2708113-01

#13 in Method: METHOD 601/602

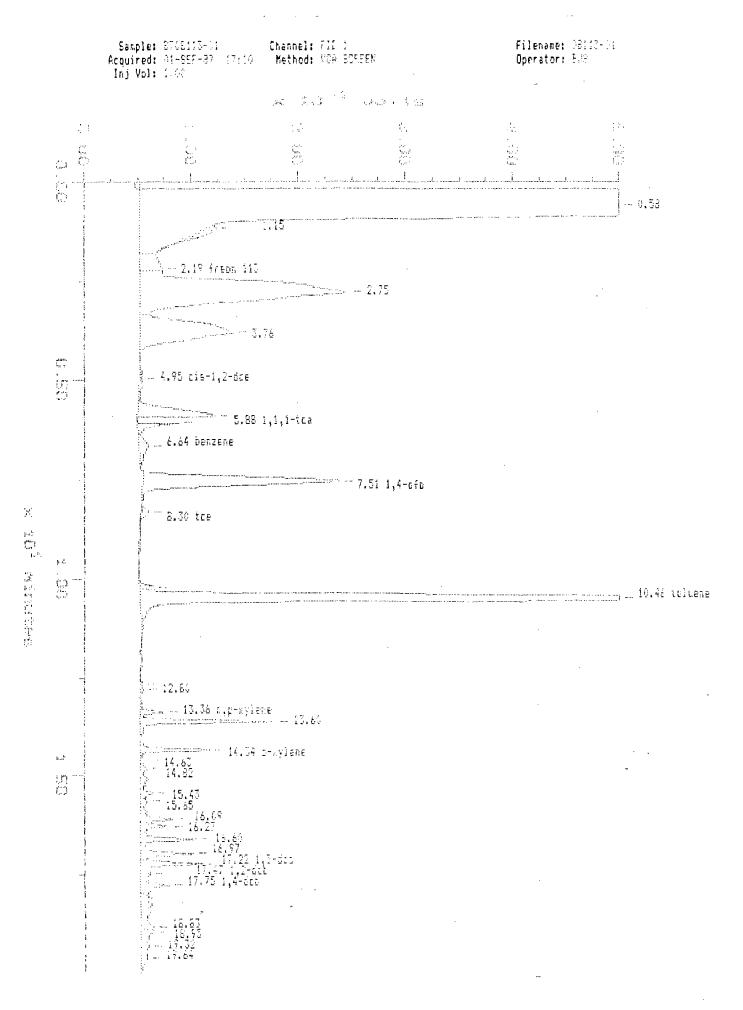
Acquired: 8-SEP-1987 12:13 Rate: 3.846 points/sec

Duration: 28.500 minutes

Operator: SRS

Type: UNKN

Instrument: Chromatograph 1


Filename: 08113-1A

Index: Disk

Dilution: 100.000

DETECTOR: 01 A

PK	ID	Retention Time (minutes)	Type	Peak Height (microvolts)	Peak Area (microvolt-sec)	Area Percent	Code	Base	Solution Conc	Component Name
									0.13	( 1-DCE
1		5.209	BB	28259	194189	0.25			0.15	() I-DCE
2	7	5.893	БP	4839259	32192472	42.10	EXT	AREA	17.33	Methylene Cl
3	9	7.007	FP	1208519	12265130	16.04	EXT	AREA	6.32	1,1-DCA
4	12	8.753	PP	2600658	16449436	24.13	EXT	AREA	61.44	Bromochloro Me
5	13	9.152	PB	7 <b>6624</b> 3	13359954	17.47	EXT	AREA	1.99	1,1,1-TCA
TOTAL	_S			9442937	76461181				87.08	



The Mexicos Components of the Membership of the Section Selections Components on

# MAXIMA CONCENTRATION REPORT

Printag: 1-5EP-1767 20.54:43

SAMPLE: 8708113-01

47 in Wathod: VOA SCREEA

7.

Acquirec: 1-887-1987 17:10 Rate: 4.000 pointe/sec Curation: 10.000 kinutes

Operator: ExE

DETECTOR: FID 1

Type: UNKN
Instrument: hF 803 FUAL FID
Filerane: 08:13-01
Index: Disi

FK	10	Retention Time (minutes)	Type		Peak Area (microvolt-sec)	Area Percent	Code	Base	Solution Conc	Component Name
1		0.575	Ib	933102	39741637	60.08				
2		1,150	35	6532	191916	0.29			•	
-	2	2,133	P.F	20525	488482	0.74	EXT	AREA	211.96	frema 115
4	_	2.754	FF	153551	5986441	7.05		_		
-		5.743	PE.	25225	2451746	5.71				
į,	3	4,945	86	2071	79096	0.12	ΕλΤ	AREA	39,43	cis-1,2-≼cs
;	á	5.879	PP	72011	855874	1.31	EXT	AREA	354.35	1,1,1-1ca
5		6.342	25	38535	21:519	0.33				-:
Ę	5	5,638	₽Đ	8333	217014	3.53	EXT	AREA	25.2)	benzene
10	Ė	7,513	35	180430	2611873	3.95	EXT	ABEA	95.00	1,4-015
11	7	8.304	33	5795	\$1185	6.12	EST	AREA	34,81	toe
12		10.192	57	12833	<b>5</b> 4610	0.14				
13	ė	10.463	FВ	933247	8850857	17.40	ERT	AREA	374,91	toluene
; }		12,538	27	£30	-11271	-0.02				
. 1		12.796	PF.	ŽŮaŽ	16020	0.02			•	
ip	10	15,367	FF	22194	138198	0,21	E) T	AREA	6,64	s.p-xylene
13		13.604	FF	114535	725454	1.10				,
18	11	14,342	PF	64188	360044	0.54	EXT	AREA	36.74	o-xylene
: 0		14,529	PF	3859	33255	0.05				
20		14,817	È D	5326	58234	0.09				
21		15,479	PF	12057	19558:	0.30				
12		15,612	55	5892	E7825	(-, 09				
13		18.088	PF	322e7	250937	0.78			•	•
24		16.267	PP	28854	173794	0,28				•
- 5		16.600	5F	51950	345939	0.52				
15		16.967	78	49275	335662	0,45				
27	3 2	17.217	FP	58737	487157	0.74	EXT	FEA	111.21	1,3-608
28	15	17,457	ē8	707. 44.4	21849	6,03	EX7	AREA -	. <u>5,01</u>	1,2-268
29	14	17.354	ĒĒ	1:495	270177	0.35	EYT.	APEA	52.71	1,4-206
30		16,829	77	11771	415472	0.64				
31		18.959	57.	11938	. 185723	0.28				
32		15.017	7.7	7491	151720	0.16				
33		19.642	50	r 6341	î 87298	0.14				

RIC 89/18/87 23:36:88 CALI: CALIMO V. SAMPLE: U-2 1:18 DILUTION CONDS.: M624/8248:35-12884DEG/MIN:UOCOL RANGE: G 1,1508 LABEL: N 8, 4.8 QUAN: A 8, 1.8 J 8 BASE: U 28, 3 20 TO 1500 100.0 1520 RIC_ 480 6:48 588 18:88 1400 231 20 800 13:20 1999 16140 1288 201**8**8

SCA TIM

# S-CUBED DIAGNOSTICS

1CU08113V01 CALTAB 09/10/87 U-2 1:10 DILUTION F1

NO	LIB	ID	M/E	SCAN	PRED	DELTA		PUR	MATCH	AREA
1	V2	(IS1	128	310	309	-1	982	721	92.	13457.
2	V2	CHLD	50	133	132	-1	765	33	45.	63.
	***	WARNIN	IG: PO	SSIBLE	INTER	FERENCI			ITATION MASS	# 2 ***
				-139		-7	941	25	45.	
				-137		-5	781	27	40.	
3	V2	VINY	62	133	135	2	992	314	72.	520.
4	V2	BROM	94	143	146	3	884	81	51.	1827.
				-156		-10	805	79	37.	
				-140		6	566	46	30.	•
5	V2	CHLO	64	148	148	0	992	219	71.	1577.
6	V2	TRIC	101		152	NO P	EAKS	FOUND		
7	VZ	1,1-	96	175	175	0	994	553	100.	2490.
8	V2	TRIC	101	171	170	-1	413	31	27.	79.
				-173		-3	178	19	11.	
9	V2	ACET	43	188	187	-1	998	581	89.	10563.
10	V2	CARB	76	197	197	0	507	17	39.	72.
				-199		-2	508	1	33.	
				-201		-4	486	4	27.	
11	٧2	METH	84	199	199	0	988	847	100.	153811.
12	U2	TRAN	96	211	211	0	983	156	85.	485.
13	V2	(1,1	63	238	238	Ō	997	676	100.	47996.
14	V2	2-BU	43	304	304	0	983	165	67.	1654.
				-311		-7	991	16	47.	
				-296		8	830	33	39.	
15	V2	CIS-	96	283	282	-1	911	461	82.	1294.
16	V2	CHLO	83	294	294	ō	467	18	30.	307.
	~_	JU		-290		4	481	11	26.	
				-298		-4	462	15	25.	
17	V2	1,1,	97	325	325	ō	998	67B	100.	30377.
18	V2	CARB	117	338	345	7	688	39	33.	16.
10	VL	CHILD	111	-336	343	9	727	42	31.	10.
19	V2	(SU1	65	364	363	-1	998	574	89.	21590.
20	V2	(152	114	404	402	-2	989	810	95.	66231.
21	V2	BENZ	78	367	368	1	806	148	95.	1798.
									ITATION MASS	
22		1,2-	62		374			193	71.	668.
23	V2	TRIC	130	432	432	Ö		329	87.	1167.
24	V2	1,2-	63	461	461	ŏ	572	58	45.	63.
	-			-459	70.	2	574	55	39.	55,
				-465		-4		59	34.	
25	V2	BROM	83	493	491	-2	750	24	42.	146.
	~ ~	2	00	-489	491	2	472	9	26.	270.
				-496		<b>-</b> 5		10		
26	115	2-CH	63	551	562				24.	134.
20	V.	E. CH	. 63		552	1			62.	134.
				-553	• •	-1			60.	
22	113	HTMU	40	-547	-	5	627		41.	426
27	V2	VINY	43	247	246	-1		37	47.	126.
				-245		1	609	29	45.	
20	ш	7041		-243	F 4	3		26	41.	
28	V2	TRAN	75		571			FOUND		4644
59	ΛS	4-ME	43	600	603	3		109	34.	1344.
				-603		0	519	47	33	

								***	JU.	
୍ 30	VZ	TOLU	92	603	605	2	993	651	95.	61466.
31	V2	(SU2	98	593	594	1	986	845	99.	90603.
32	V2	(IS3	117	840	838	-2	980	831	96.	43929.
33	V2	CIS-	75	655	651	-4	672	71	38.	31.
				-645		6	659	62	35.	
				-643		8	667	60	33.	
34	V2	1,1,	97	670	670	0	770	87	54.	460.
				-664		6	549	42	28.	
35	٧z	TETR	164		693	NO P	EAKS	FOUND		
36	V2	2-HE	43	750	748	-2	547	105	36.	352.
				-745		3	551	93	34.	
				-753		-5	560	111	34.	
37	٧Z	DIBR	129		743	NO P	EAKS	FOUND		
38	V2	CHLD	112		847	NO P	EAKS	FOUND		
39	V2	ETHY	106	864	863	-1	993	296	77.	427.
				-862		1	981	247	74.	
40	V2	TOTA	106	878	877	-1	988	574	94.	3384.
41	V2	STYR	104	969	970	1	408	71	34.	<b>59.</b>
42	V2	BROM	173		1026	NO P	EAKS	FOUND		
43	V2	1,1,	83	1094	1085	-9	904	62	40.	403.
				-1086		-1	580	10	35.	
/				-1088		-3	574	13	32.	
44	V2	1,3-	146		1287	NO P	EAKS	FOUND		
45	V2	1,4-	146		1313	NO P	EAKS	FOUND		
46	٧z	1,2-	146		1381	NO P	EAKS	FOUND		
47	٧2	(SU3	95	1078	1080	2	983	799	98.	34852.

7.

QUANTITATION REPORT FILE: 1CU08113V01 DATA: 1CU08113V01.TI 09/10/87 23:36:00 SAMPLE: U-2 1:10 DILUTION ANALYST: ARL SUBMITTED BY: WAHLER AMOUNT=AREA * REF.AMNT/(REF.AREA)* RESP.FACT) RESP. FAC. FROM LIBRARY ENTRY NO NAME: BROMOCHLOROMETHANE 1 (IS1) 2 (IS2) 1,4-DIFLUOROBENZENE 3 (ISB) CHLOROBENZENE-D5 SURROGATE 4 (SU1) D4-1,2-DICHLOROETHANE 5 (SU2) SURROGATE TOLUENE-D8 6 (SUE) SURROGATE P-BROMOFLUOROBENZENE 7 CHLOROMETHANE 8 VINYL CHLORIDE 9 **BROMOMETHANE** 10 CHLOROETHANE 11 TRICHLOROFLUOROMETHANE 12 1,1-DICHLOROETHENE TRICHLORDTRIFLUORDETHANE 13 14 ACETONE 15 CARBONDISULFIDE 16 METHYLENE CHLORIDE 17 TRANS-1, 2-DICHLOROETHENE 18 (1,1)-DICHLOROETHANE 19 **2-BUTANONE** 20 CIS-1,2-DICHLOROETHENE 21 CHLOROFORM 22 1,1,1-TRICHLOROETHANE 23 CARBON TETRACHLORIDE 24 BENZENE 25 1,2-DICHLOROETHANE 26 TRICHLORDETHENE 27 1,2-DICHLOROPROPANE 28 BROMODICHLOROMETHANE 29 2-CHLOROETHYLVINYL ETHER 30 VINYL ACETATE 31 TRANS-1, 3-DICHLOROPROPENE 32 4-METHYL-2-PENTANONE 33 TOLUENE CIS-1,3-DICHLOROPROPENE 34 35 1,1,2,-TRICHLOROETHANE 36 TETRACHLORUETHENE 37 S-HEXANONE 38 DIBROMOCHLOROMETHANE 39 CHLOROBENZENE 40 **ETHYLBENZENE** 41 TOTAL XYLENES 42 STYRENE 43 BROMOFORM 44 1,1,2,2-TETRACHLORDETHANE

45

46

1,3-DICHLOROBENZENE

1,4-DICHLOROBENZENE

	M 45	55411	<b>TTM</b> -	255	БОТ	METU	ADCAZUCUTA	AMOUNT		** <b>TOT</b>
NO	M/E	SCAN	TIME	REF	RRT	METH	AREA (HGHT)	AMOUNT	110 4	%TOT
1	128	310	5:10	1	1.000	A BB	13457.	50.000		3.68 3.68
2	114	404	6:44	2	1.000	A BB	66231.	50.000		
3	117	840	14:00	3	1.000	A BB	43929.	50.000		3.68
4	65	364	6:04	1	1.174	A BB	21589.	89.038		6.55
5	98	593	9:53	2	1.468	A BB	90603.	92.719		6.82
6	95	1078	17:58	3	1.283	A BB	34851.	93.870		6.91
7	50	133	2:13	1	0.429	A?BB	63.	0.293		0.02
8	62	133	2:13	1	0.429	A BB	520.	2.329		0.17
/9	94	143	2:23	1	0.461	A?BU	1827.	4.741		0.35
<b>√</b> ( <b>0</b> )	64	148	2:28	1	0.477	A BB	1577.	8.987	UG/L	0.66
11		FOUND								
\Q	96	175	2:55	1	0.565	A BB	2490.	7.714		0.57
\13 (14)	101	171	2:51	1	0.552	A?BB	79.	0.152		0.01
\ 6 B	43	188	3:08	1	0.606	A BB	10563.	222.441		16.37
√ <u>15</u>	76	197	3:17	1	0.635	A?BB	72.	0.122		0.01
ν <b>(</b> 6)	84	199	3:19	1	0.642	A BB	153811.	424.458		31.23
/17	96	211	3:31	1	0.681	A BB	485.	1.360		0.10
√, <b>18</b> )	63	238	3:58	1	0.768	A BB	47996.	78.366		5.77
<b>V</b> . (9)	43	304	5:04	1	0.981	A?VB	1654.	18.393		1.35
√ 20	96	283	4:43	1	0.913	A BB	1294.	3.176	UG/L	0.23
121	83	294	4:54	1	0.948	A?BU	307.	0.483		0.04
√21 √22	97	325	5:25	1	1.048	A BB	30377.	54.765	UG/L	4.03
23	117	338	5:38	1	1.090	A?BB	16.	0.031	UG/L	0.00
24	78	367	6:07	2	0.908	A?BB	1797.	1.834	UG/L	0.13
25	62	374	6:14	2	0.926	A BB	668.	1.701	UG/L	0.13
\\\EB	130	432	7:12	2	1.069	A BB	1167.	2.528	UG/L	0.19
27	63	461	7:41	2	1.141	A?BB	63.	0.147	UG/L	0.01
28	83	493	8:13	2	1.220	A?VB	146.	0.269	UG/L	0.02
29	63	551	9:11	2	1.364	A?BB	134.	0.481	UG/L	0.04
30	43	247	4:07	2	0.611	A?VB	126.	0.801	UG/L	0.06
31	NOT	FOUND								
125	43	600	10:00	2	1.485	A?BV	1344.	6.104	UG/L	0.45
J (3)	92	603	10:03	2	1.493	A BB	61466.	79.389	UG/L	5.84
34	75	655	10:55	3	0.780	A?BB	31.	0.098	UG/L	0.01
35	97	670	11:10	3	0.798	A?BB	460.	1.027	UG/L	0.08
36	TON	FOUND								
37	43	750	12:30	3	0.893	A?BV	<b>352</b> .	2.566	UG/L	0.19
38	HOT	FOUND								
39	HOT	FOUND								
<b>21</b>	106	864	14:24	3	1.029	A?BB	427.	1.135	UG/L	0.08
(1)	106	878	14:38	3	1.045	A BB	3384.	6.532		0.48
42	104	969	16:09	3	1.154	A BB	59.	0.080	UG/L	0.01
43	HOT	FOUND								
44	83	1094	18:14	3	1.302	A?BB	403.	0.902	UG/L	0.07
45	NOT	FOUND								
46	NOT	FOUND								
47	HOT	FOUND						•		

QUANTITATION REPORT FILE: 10008113V01

DATA: 1CU08113V01.TI 09/10/87 23:36:00 -

21

22

TOLUENE

TOTAL XYLENES

SAMPLE: U-2 1:10 DILUTION

SUBMITTED BY: WAHLER ANALYST: ARL

AMOUNT=AREA * REF.AMNT/(REF.AREA)* RESP.FACT)

RESP. FAC. FROM LIBRARY ENTRY

	THOS TROST ELEMENT
ΝО	NAME
1	(IS1) BROMOCHLOROMETHANE
2	(IS2) 1,4-DIFLUOROBENZENE
3	(IS3) CHLOROBENZENE-D5
4	(SU1) SURROGATE D4-1,2-DICHLOROETHANE
5	(SU2) SURROGATE TOLUENE-DB
6	(SU3) SURROGATE P-BROMOFLUOROBENZENE
7	VINYL CHLORIDE
8	BROMOMETHANE
9	CHLOROETHANE
10	1,1-DICHLOROETHENE
11	ACETONE
12	METHYLENE CHLORIDE
13	(1,1)-DICHLOROETHANE
14	2-BUTANONE
15	CIS-1,2-DICHLOROETHENE
16	1,1,1-TRICHLOROETHANE
17	BENZENE
18	1,2-DICHLORDETHANE
19	TRICHLOROETHENE
20	4-METHYL-2-PENTANONE

NO	M/E	SCAN	TIME	REF	RRT	METH	AREA(HGHT)	AMOUNT	*TOT
1	128	310	5:10	1	1.000	A BB	13457.	50.000 U	3/L 3.76 7
2	114	404	6:44	2	1.000	A BB	66231.	50.000 U	3/L 3.76
3	117	840	14:00	3	1.000	A BB	43929.	50.000 U	3/L 3.76
4	65	364	6:04	1	1.174	A BB	21589.	89.038 %	6.69 /
5	98	593	9:53	2	1.468	A BB	90603.	92.719 %	6.97
6	95	1078	17:58	3	1.283	A BB	34851.	93.870 %	7.05 (UK)
7—	<del>62-</del>	<del>-133</del> -	<del>2:13</del>	_1	0.429	A BB	<del></del>	2.329 U	37L 0.17
8-	94	<del>143</del> -	<del>- 2:23</del> -	<del>1</del>	0.461	A?BU-	<del></del>	- 4.741 U	<del>3/L 0.36</del>
9	64	148	2:28	1	0.477	A BB	1577.	8.987 U	3/L 0.68 NET 97
10	96	175	2:55	1	0.565	A BB	2490.	7.714 8	
11	43	189	3:08	1	0.606	QEDT	9590.	201.954 U	3/L 15.17 UET 171
12	84	199	3:19	1	0.642	A BB	153811.	424.458 U	3/L 31.89 NET 41
13	63	238	3:58	1	0.768	A BB	47996.	78.366 U	
14	43	304	5:04	1	0.981	QEDT	1556.	17.304 U	
15	96	283	4:43	1	0.913	A BB	1294.	3.176 U	3/L 0.24 NA 3/2
16	97	325	5:25	1	1.048	A BB	30377.	54.765 U	3/L 4.11 NET GE
1-7-	78-	<del>367</del> -	<del>- 6:07</del>		<del>0.908</del> -	A?BB	<del>1797</del>	1.834-U	<del>3/L 0.1</del> 4
18-	<del>62</del> -	<del>374</del>	<del>- 6:14</del>		0.926	A BB	<del></del>	1.701-U	
19	130	432	7:12	2	1.069	A BB	1167.	2.528 U	
20-	43-	<del>- 600</del> -	<del>- 10:00</del>		<del>-1-485</del> -	A?BU-	1344.	6.104 U	
				_				3.104 0	

A BB

QEDT

61466.

5268.

1:10 DIWTON

5.96 NET 79

0.76 四 10

79.389 UG/L

10.169 UG/L

87B

603 10:03

14:38

2 1.493

3 1.045

92

106

21



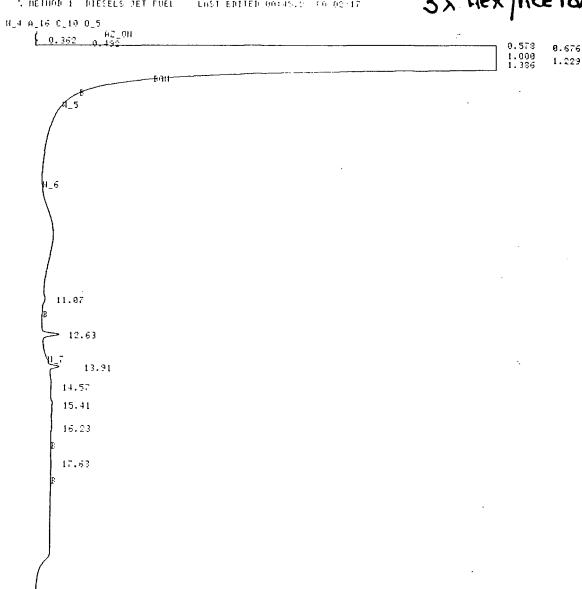
Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/30/87 Project No. JCO-104H

#### Q.C. DATA REPORT

Analyst: G. Brock

Date of Analysis: 9/10/87

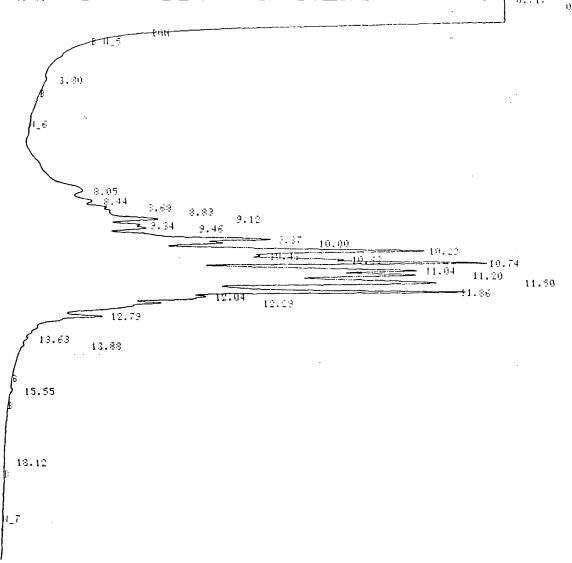
Method of Analysis: EPA 3510/8015


Detection Limit: 1.0

Units: ppm

Sample Number	<u>Analyte</u>	Original Res	ult Duplic	ate Result	& Deviation
7082427	Paint Thinner	< 1.0	<	1.0	0.0
Sample Number	Analyte	Sample Contribution	Spike Added	Spike Result	% Recovery
-	Paint Thinner	D.I. Water	10	9.1	91

SEQUOIA ANALYTICAL LABORATORY

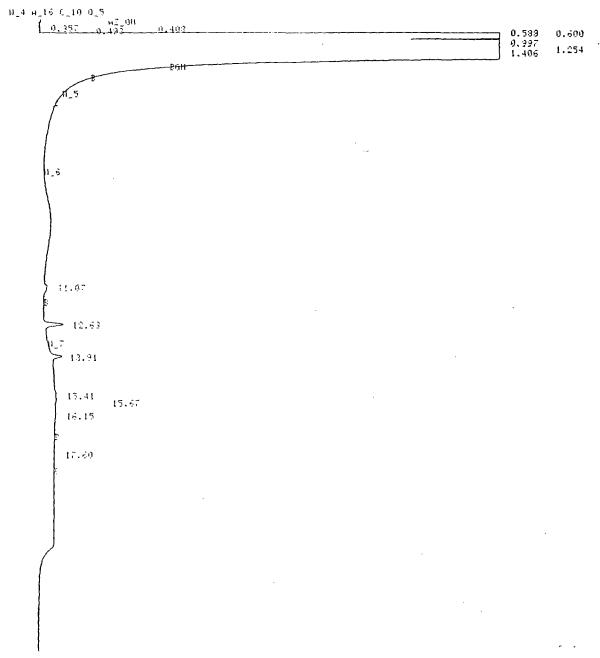

Arthur G. Burton Laboratory Director



FILE 519 PUN 19 STARTED 19:13.0 20:02/19 DIE3ELS/JET FUEL % HETHOD 1 DIE3ELS/JET FUEL LAST EDITED 00:45.2 80 02/17

P.Τ	нРЕн	HEIGHT BC	APEA PERCENT	HEIGHT PERCENT
11.07	11874	0.6436	10.6597	5.9519
12.63	48773	5.5561 "	43,7312	51.3331
12.91	22944	3.3529 #	10.5985	31.0077
14.57	7545	0.3509 #	8.5693	3.2540
15.41	11855	0.6013 V	10.6410	5.5612
16.23	3353	0.1507	3,0093	1.3937
17.63	3029	0.1555	5.7083	1.4384

7 FEMI'S > MPEH REJECT 111337 TOTAL MEGH 7 FEMIS 1 HEIGHT FEJECT 10.8330 TOTAL HEIGHT




FILE 5 RUN 4 STARTED 21:53.3 80:02:19 % METHOD 1 DIESELSKJETFUEL LAST EDITED 19:49.3 80:02:19

14	нЕн	нетант	BC	AFEA PERCENT	нетант рерсент
3.80	16317	0.7515		0.0938	0.0532
8.05	860082	18.1209	Ţ	4,9439	1,2802
8.44	344954	21.0761	T	1.9840	1,4913
8.58	269190	25.5263	T	1.4940	1.8062
୫.୧૩	241992	26.6949	Ţ	1.3918	1,8889
2.12	703555	41.0071	T	4.0466	2.9228
5.34	287400	35.9997	Ţ	1.6530	2.5473
9.45	379764	37.8246	1	2.1843	2.6764
9.87	1147407	75.0940	T	6.5935	5.3276
10.00	491663	61.1530	T	0.8079	4.3274
10.29	1704869	121.8844	T	9.0058	8.6243
10.43	344401	72.5855	r	1.3903	5.1360
10.63	700105	97.6734	T	4.0273	€.9112
10.74	1064362	141.0397	ſ	7,2750	9.9797
11.04	1468534	110.1113	T	8.4465	8.4983
11,20	1275033	110.7606	T	7.3354	3.4741
11.50	2017886	116.0067	Ī	11.6061	8.9160
11.86	1664900	134.9533	T	9.3753	9.5430
12.04	683213	57.1180	Ť	3.9236	4.0415
12,23	326841	40.7890	1	4.7557	3.0934
12.79	547927	÷ 26.1079	T	3.1515	1.8544
13.83	50305	4.1727	Ť	0.1393	0.2333
13.89	ବ୍ୟୁଣ୍ଟର	3.305e		0.54%7	0.1333
15.55	6230	0.7454		0.0333	0,052)
18.12	1986	0.1613		6.6114	0.0114

CS PENES - HEEM PEJECT CS FENES - HEIGHT PEPECT 17386333 | 101mL n06m 1413.1716 | 101mL N016H

FILE 513 PUN 13 STAFTED 06:53.9 20:02:19 DIESELS/JET FUEL 31-4 7082427 (W:1) NETHOD 1 DIESELS/JET FUEL LAST EDITED 00:45.2 80:02/17



FILE 513 RUN 13 STAFTED 06:53.9 90/02/19 DIESELS/JET FUEL % METHOD 1 DIESELS/JET FUEL LAST EDITED 00:45.2 90/02/17

23	нРЕн	HEIGHT BC	HPEA PEPCENT	HEIGHT PERCENT
11.07	17402	1.0777	16.6142	9.1098
12.63	59375	6.2403 U	43.5715	52.7525
13.91	03765	3.4669 0	22,6319	29.3047
15.41	3423	0.3339 U	3,2733	3,2446
15.67	3806	0.0019 ((	3.6937	2.8053
15.15	2772	0.2096	2.6463	1.7714
17.60	2753	0.1197	2.6284	1.0116

7 FEALS : AFEA PEJECT 7 FEALS : HEIGHT FEJECT

104742 TOTAL AFEA 11.8304 TOTAL HEIGHT FILE 514 RUN 14 STARTED 07:21.5 80:00 13 DIESELS/JET FUEL 00 HETHOD 1 DIESELS/JET FUEL LAST EDITED 00:45.0 80 02:17

H_4 A_16 C_10 0_5 0.361 HZ_0N 0.625 1.042 1.446 0.634 1.050 1.556 3.106 p H_5 11.15 12.64 13.92 14.53 15.65 16.16 17.68

FILE 514 RUN 14 STHRTED 07:21.5 80:02:19 DIESELS:TET FUEL % METHOD 1 DIESELS:JET FUEL LHST EDITED 00:45.2 80 02:17

RT	AFEA	HEIGHT BC	HPEH FEFCENT	HEIGHT PERCENT
3.106	18335	1.9852	15.3874	15.0862
11.15	13751	0.9724	15.7336	7.3899
12.64	44547	5.6952 U	37.3795	43.2803
13.92	13159	3,3332 0	15.2373	25.3307
14.53	2205	0.1886 U	1.8502	1.4334
15.65	11337	9.6397 0	9.9303	4.7931
16.16	3586	0.0041 0	3.0090	1.7034
17.53	1693	0.1294	1.4000	0.2331

8 FEALS : AFEA FEJECT 119175 TOTAL AFEA 3 PEAKS : NEIGHT FEJECT 13.1503 TOTAL WEIGHT

# 32 7082429 (10:1)

FILE 520 RUN 20 (STHPTED 19:57.9 80 02 19 DIESELSKIET FUEL 2 HETHOD 1 DIESELSKIET FUEL LAST EDITFD 00:45.2 80:02×17

M_4 H_16 C_10 O_5

9.366 0.415 0.403 0.301 1.006 1.406 0.313 1.253 1_6 10.24 10.75 > 12.59 > 13.90 14.50 15.64 16.15 17.63 18.47 10.74

FILE 300	PUH 20	STHETED	19:57.9	30-02-19	DIESELS JET FUEL
". METHOD 1	DIESELS	16 T FIIFI	1451 F	DITED 00:45.	2 86/02/17

Pſ	нРЕй	HEIGHT	BC	OPEH PERCENT	HEIGHT PERCENT
10.04	15036	2,4315	1)	8.0582	14.7014
19.75	10000	0.6710	(I	5.3355	4.9533
11.12	649	0.1881	11	0.3430	1.1371
10.59	71893	6.1375	H	23,0069	37,1932
13.90	27365	4,5711	11	14.4732	27.6375
14.50	1534	0.1334		0.3304	1.1333
15.64	15098	0.7768		8.0907	4.6967
15.15	4113	0.3153		3.3505	1.9126
17.63	2140	0.1569	IJ	1,1319	0.8280
13.47	2433	0.0913	9	1.3130	0.5511
20.74	37673	1.0289		19.9247	6.2205

11 FEHRS : HEEH PEJECT 11 FEHRS : HEIGHT FEJECT 103004 | 1016L APEA 16.5394 | 1016L HEIGHT FILE 521 RUN 21 STHRIED 20:34.6 80:02 19 DIESELSWIET FUEL % HETHOD 1 DIESELSWIET FUEL LAST EDITED 00:45.2 80/02/17

 $N_4 \ H_16 \ C_10 \ O_5$ о на он **о** на он 0.364

0.593 1.000 1.420  $\frac{0.644}{1.013}$ 1.517

1_5 3.35 10.86 12.60 13.90 14.54 H_7 15.41 15.65 16.20 17.67 18.95

FILE 501 FUNDO1 STHPTED 00:34.5 80.00.19 DIESELS JET FUEL 0 METHOD 1 DIESELS JET FUEL LHST EDITED 00:45.2 80/02/17

ΡŢ	нЕЕн	HEIGHT B	C APEH PERCENT	HEIGHT PERCENT
8.35	01469	0.5015	10.7405	3.5890
10.35	14728	0.5901	7.3631	4.2228
12.60	63646	6.1061 0	31.8406	43.6955
13.90	26433	4,1070 0	13.2516	29.5328
14.54	16788	0.6549	8,3984	4.6863
15.41	4249	0.4700 0	0.1012	3.3632
15.65	2909	$0.2760^{\circ}$	1.4553	1.9754
15.20	6507	0.0667	3.3053	1.9034
17.67	2824	0.1400 0		1.0158
18 95	40190	0.3400	90, 1961	6.0107

10 FEMIS > MFEM FEJECT 1 199889 TOTAL MREA 10 FEMIS > HEIMHT FEJECT 13.9743 TOTAL MEIGHT

FILE 502 FUN 70 STARTED 01:06.8 80 00:19 DIESELS/JET FUEL NIETHOD 1 DIESELS IFT FUEL LAST EDITIED 00:45.2 89/92/17

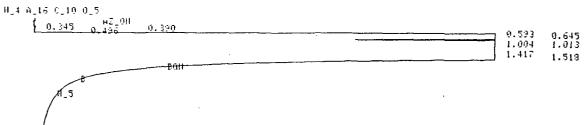
W_4 A_16 C_10 O_5 4Z_OH 0.365 0.433 0.596 1.006 1.424 0.649 1.270 1_5 11.04 12.63 13.90 14.53 15.68 16.12 R H_7 19.48 29.73

FILE 502	EUH 00	STHETED	21:06.3	30-00/19	DIESELS JET FUEL
** HETUCK I	DICCEL :	BET FUEL	LACTE	DITED OCTOR	0 00 00 (17

FI	нЕЕн	HEIGHT BC	HEEN FERCENT	HEIGHT PEPCENT
11.04	10108	0.6224	0.6550	4.2099
11.41	35333	6.0045 0	12,2083	40.5129
13.92	22699	3.5151 0	4.9775	23.7747
14.53	2723	0.2349 0	0.5542	1.9267
15.68	13650	0.7893 0	2.9932	5.3385
15.12	1287	0.3133	9,2773	2.1559
18.48	105	0.2919 0	0.0668	1.9745
10.73	247269	2.3582	9,2990	20.0073
200.0		2		20.001.3
8 FEat 9	. OFEN PFJE	CT 4560	OP TOTAL AREA	
S PENIS				lT.
		÷		
8.35	21463	0.0010		
10.35	14723	0.5001	7.3691	4.2228
12.60	63646	€.1061 #	11.8406	43.€955
13.90	26499	4.1270 #	13.1516	29.5328
14,54	16788	0.6549	8,3994	4.6863
	4240	0,4700 0	2,1212	3.3632
15.41		0.1760 0	1.4553	1,2754
15.65	0909 6607	0.0557	1.3053	1.9034
15.20		0.1420 9	1.4119	1.0153
17.67	2824	0.1420 0	16 1651	- 0107

1.1.1.

20.73


247000

2.9302

B FEALS > HPEA FEJECT 456029 TOTAL HEEM 3 PEWS 3 HEIGHT REJECT 1477852 TOTAL HEIGHT

3× 7062432 (10:1)

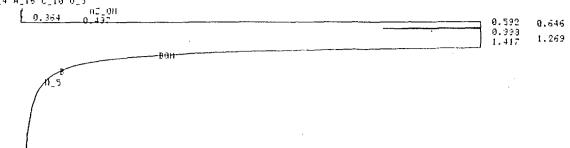
FILE 502 RUN 03 STARTED 01:37.0 80.00/19 DIESELS/JET FUEL N METHOD 1 DIESELS JET FUEL LAST EDITED 00:45.0 00/02/17



3.35 B 11.03 12.64 13.92 14.51 15.44 £ H_7 13.92 21.25

FILE 523 RUN 23 STARTED 21:37.0 90/02/19 DIESELS/JET FUEL NETHOD 1 DIESELS/JET FUEL LAST EDITED 00:45.2 80/02/17

19	HFEH	HEIGHT BC	HFEH FEFCEUT	HEIGHT PERCENT
8.35	7997	0.1007	0.6167	1.3236
11.03	12747	0.6915	4,1762	4.5148
12.64	48914	5.3୫୧୭ ମ	15.9926	35.1785
10.30	15603	2.9947 0	5.1135	19.5560
14.51	24719	1.0147	8.0086	€.6240
15.44	39633	0.9996	12.6517	5.5133
10.92	101728	2.1218 9	33.3318	13.8511
21.25	54362	1.7056	18,0063	12.4400


E FEHLS . HEEN FEJECT . 3 FEHLS : HEIGHT PEJECT

305108 TOTAL AFEA 15.3184 TOTAL HEIGHT

FILE 504 PUN 04 STARTED 20:39.5 80.00 19 INTESELS/JET FUEL NIETHOD 1 DIESELS/JET FUEL LAST EDITED 00:45.0 80.02.17

U_4 A_16 C_10 O_5

1_6



12.45

> 13.33 14.51

16.07

15.39 15.67

11,7

17.57

FILE 524 RUN 24 STHRIED 22:39.5 80:02/19 DIESELS-JET FUEL 5 NETHOD 1 DIESELS JET FUEL LAST EDITED 00:45.2 80:02/17

ET	APEA	нетант во	HEA FERCENT	HEIGHT PERCENT
12.45	123915	6.1659 0	62.4231	40.6998
13.89	54404	6.9750 U	27.4096	46.0406
14.51	2419	0.2244 0	1.2196	1.4815
15.39		0.4563 0		3.0116
15.67	9338	0.6572 0	4.7079	4.3379
16.07		0.4309		2.3442
17.57	8372	0.2400	4,2209	1.5844

5 PEHLS ) HREH PEJECT 7 FEARS > HEIGHT PEJECT

193343 | TOTHE HEEH 15.1497 | TOTHE HEIGHT

in

FILE 505 RUN 25 STAPTED 23:10.4 80.00 12 DIESELS JET FUEL LAST EDITED 60:45.2 80 02:17

9.645 1.004

1.260 -Britt 1_6 10.98 12.63 13.92 14.32 15.42 17.70 21.49

FILE 505 RUN 05 STHRTED 20:10.4 80.00 19 DIESELS/JET FUEL % HETHOD 1 DIESELS/JET FUEL LAST EDITED 00:45.0 80/00/17

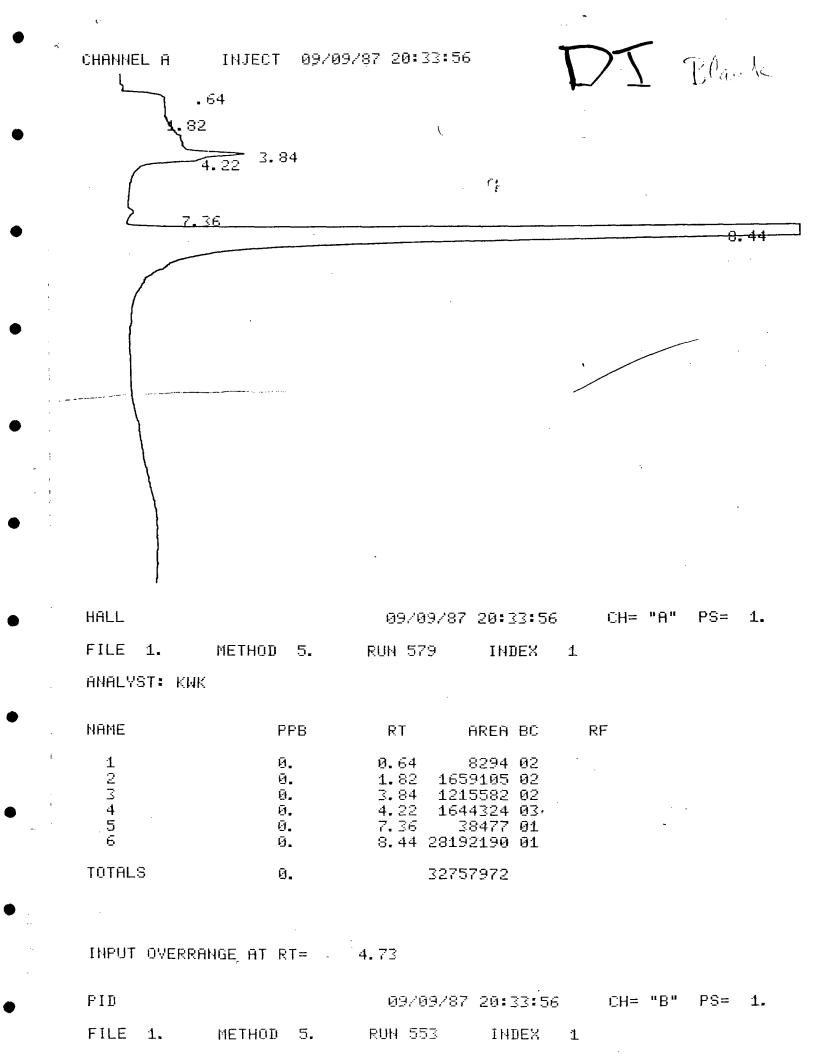
PT	APEA	HEIGHT BC	HPEH PERCENT	HEIGHT PEPCENT
10.98	12095	0.5110	4.3466	3.6148
10.63	52322	5.5732 0	18,3030	39.4036
13.92	18591	3,3273 #	6.6810	23.5078
14.32	9373	0.4903 #	3.5473	3.3354
15.40	182003	2,8119 0	€5.9400	19.8838
1 0	0174	0.1053	0.7313	0.3399
01.49		1,7101		9,9778

5 FEMPS ) MFEW REJECT 279252 TOTAL MFEW 7 FEMPS ) MEIGHT FEJECT (14.1419 TOTAL MEIGHT



Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/30/87 Project No. JCO-104H

### Q.C. DATA REPORT


Analyst: K. Keeley
Date of Analysis: 9/10-11/87
Method of Analysis: EPA 601/602
Detection Limit: 0.5
Units: ppb

Sample Number	<u>Analyte</u>	Original Result	Duplicate Result	% Deviation
7082433	1,1-DCA	26 -	24	4

Sample Number	Analyte	Sample Contribution	Spike Added	Spike Result	% Recovery
7082437	TCE	< 0.5	1.0	0.99	99

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton . Laboratory Director



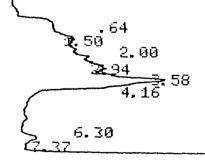
# ANALYST: KWK

HAME	PPB	RT AREA BC	RF
1 2 3 4 5 6	0. 0. 0. 0. 0.	0.64 8294 02 1.82 1659105 02 3.84 1215582 02 4.22 1644324 03 7.36 38477 01 8.44 28192190 01	Mank
TOTALS	9.	32757972	

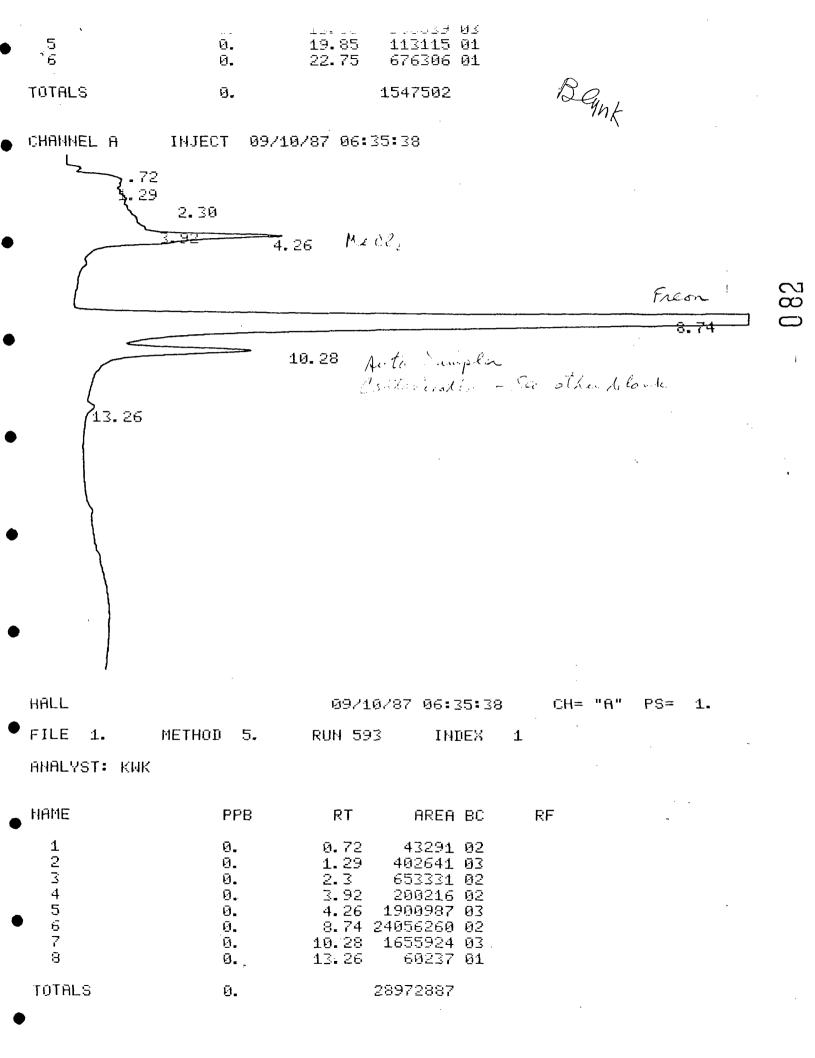
INPUT OVERRANGE AT RT= 4.73

PID 09/09/87 20:33:56 CH≈ "B" PS= 1.

FILE 1. METHOD 5. RUN 553 INDEX 1


AHALYST: KWK

HAME	PPB	RT	AREA	BC	RF
1 2 3 4	0.	27.31	293652 2715154 553483 4367880	02 02	
TOTALS	0.		7930169		


CHANNEL A INJECT 09/09/87 21:19:08

لمبر100

7082432



50.52



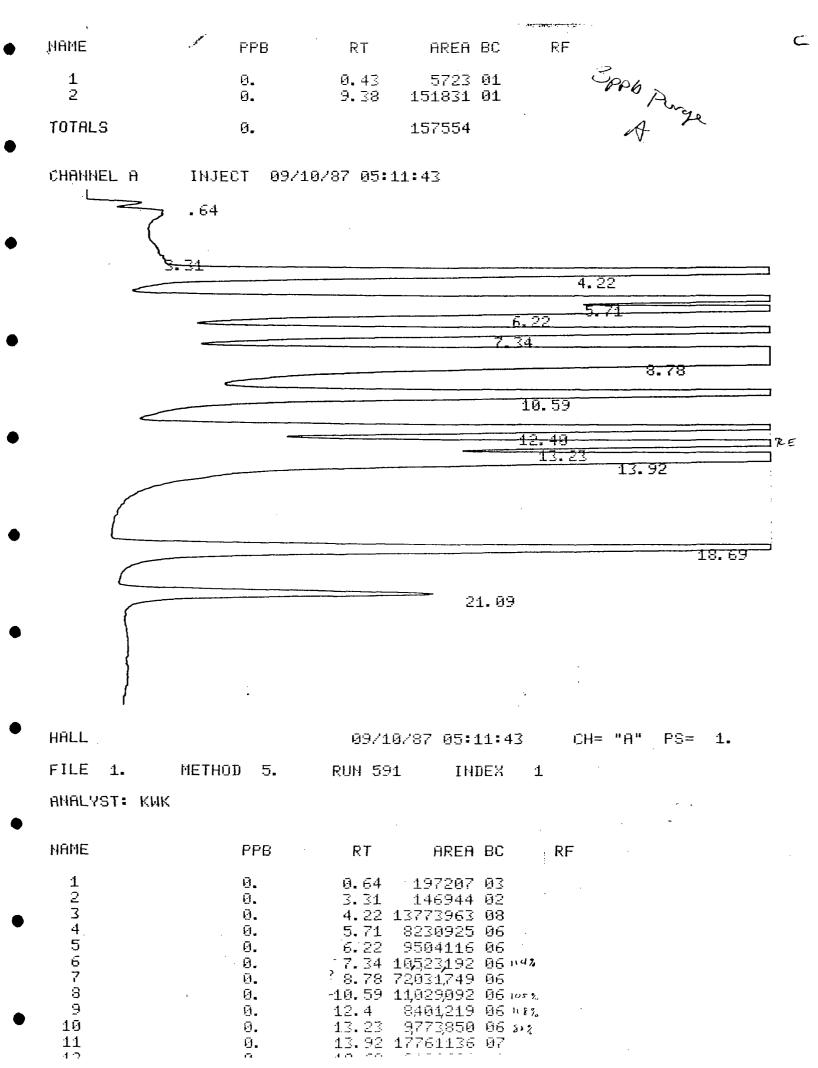
```
HALL
 09/10/87 06:35:38 CH= "A"
 PS=
FILE
 1.
 METHOD
 5.
 RUH 593
 INDEX
 1
AMALYST: KNK
TAME
 PPB
 RT
 AREA BC
 RF
 1
 ũ.
 0.72
 43291 02
 2345678
 1.29
 Ø.
 402641 03
 2.3
 Ø.
 653334 02
 0.
 3.92
 200216 02
 Ū.
 4.26
 1900987 03
 8.74 24056260 02
 Ū.
 Ø.
 10.28
 1655924 03
 13.26
 60237 01
TOTALS
 Ū.
 28972887
MPUT OVERRANGE AT RT= 4.79
·ID
 CH= "B"
 PS=
 1.
 09/10/87 06:35:38
 ILE
 METHOD
 1.
 5.
 RUN 567
 INDEX
 1
 HALYST: KWK
 AME
 PPB
 RT
 AREA BC
 RF
 1
 Ø.
 9.38
 156007 01
 OTALS
 Ū.
 156997
 HANNEL A
 INJECT 09/10/87 07:43:39
 83
 ALL
 09/10/87 07:43:39
 CH= "A"
 PS=
 METHOD 5.
 RUN 594
 1
 INDEX
 HALYST: KAK
 HIE
 PPB
 RT
 AREA BC
 RF
)TALS
 Ū.
```

09/10/87 07:43:39

THREX

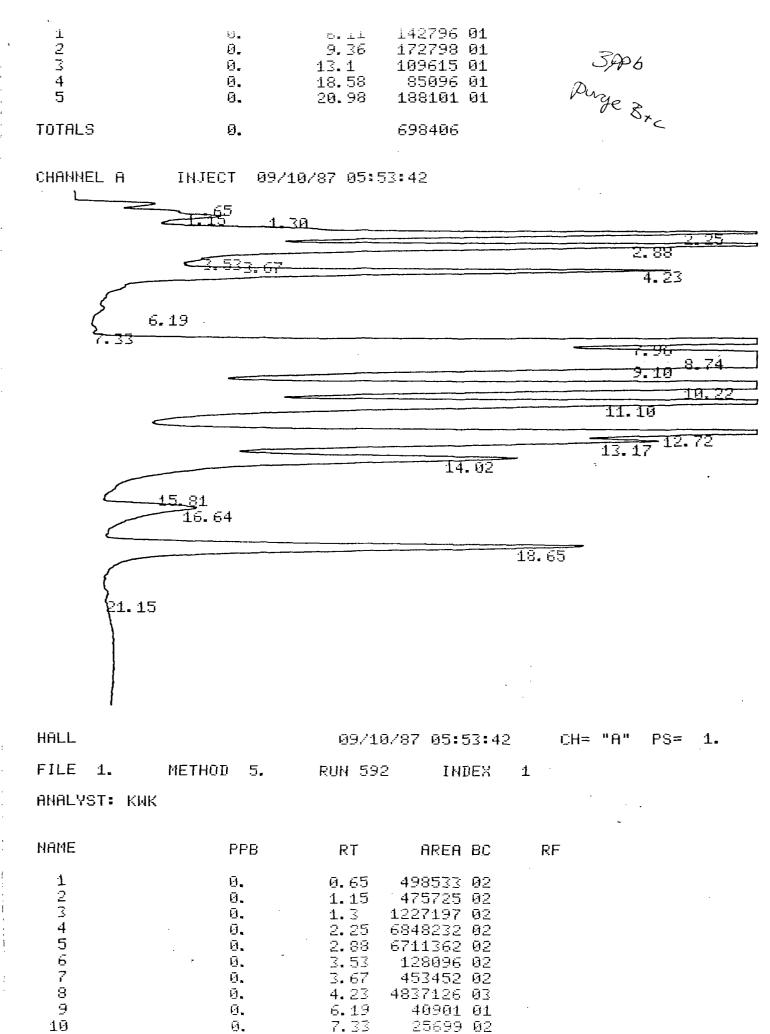
**RUN 568** 

CH= "B"


PS=

 $\prod$ 

LE


1.

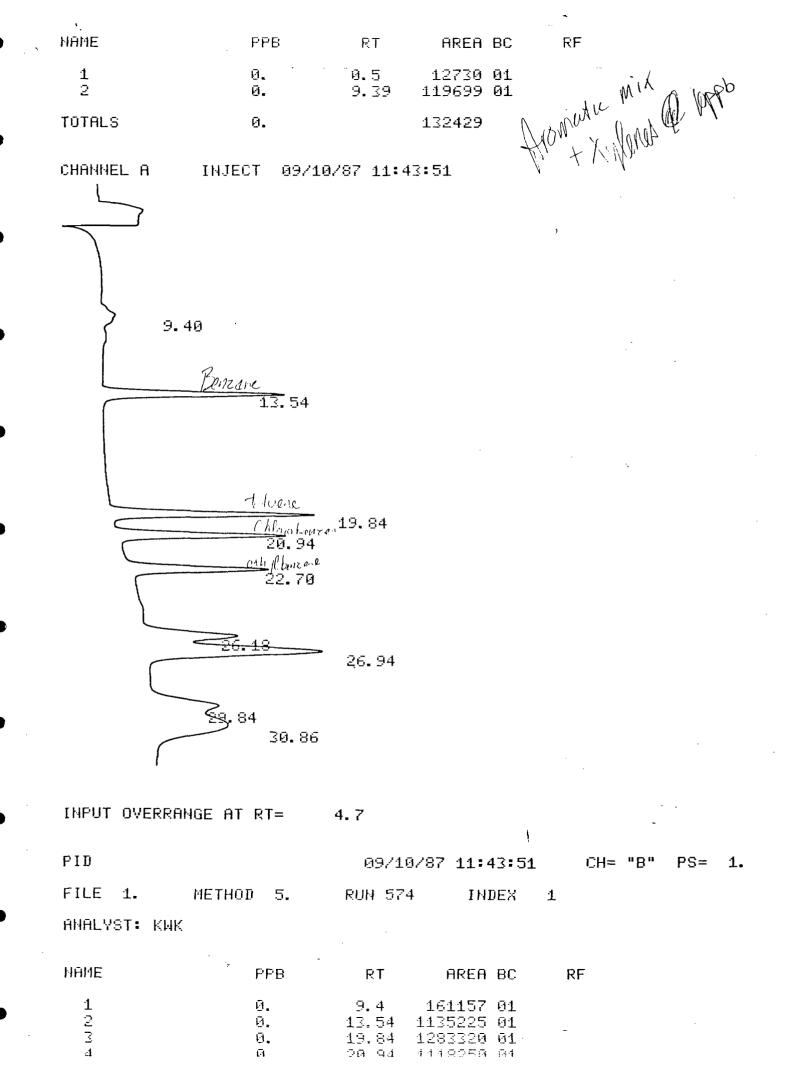
METHOD 5.



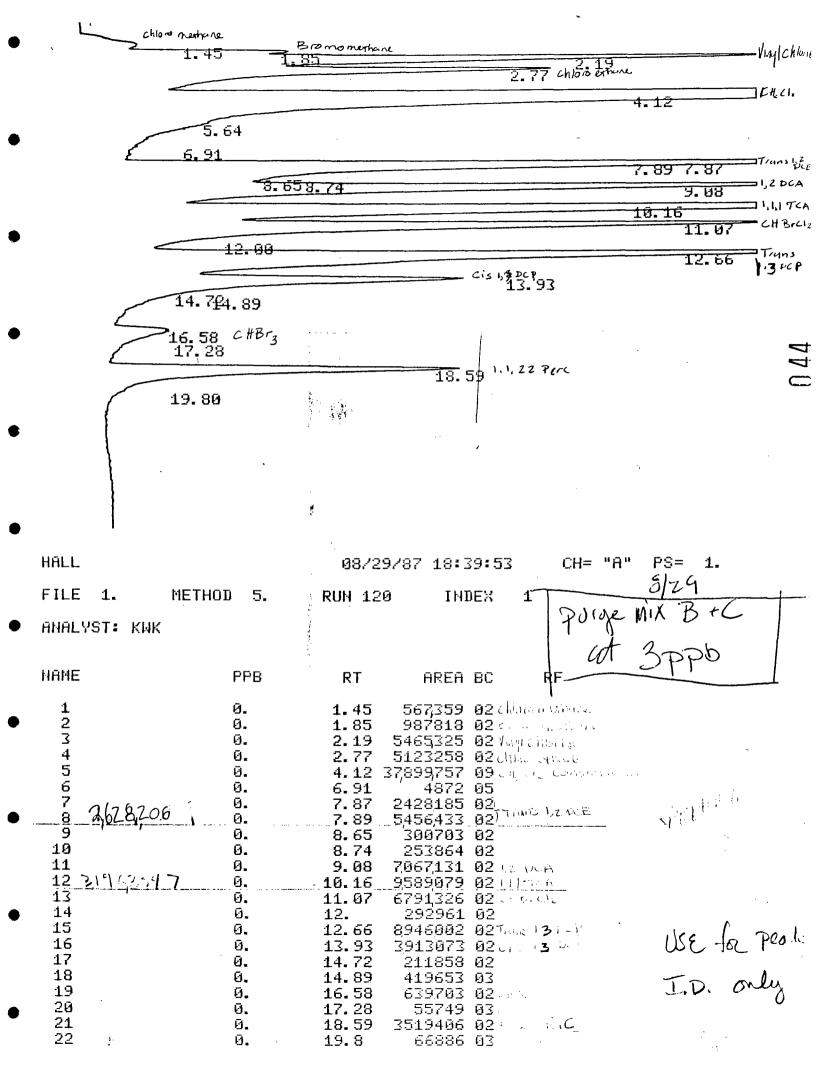
HALL 09/10/87 05:11:43 CH= "A" FILE METHOD 5. RUN 591 INDEX 1 ANALYST: KWK NAME PPB RT AREA BC 1 Ø. Ø. 64 197207 03 Θ. 3.31 146944 02 3 Ø. 4.22 13773963 08 Ø. 5.71 8230925 06 5678 Ø. 6.22 9504116 06 7.34 10523192 06 14% Ø. 2 8. 78 72031,749 06 Ũ. -10.59 11,029,092 06 105% Ø. 9 Ø. 8401219 06 18% 12.4 10 Θ. 9773,850 06 812 13.23 11 Ø. 13.92 17761136 07 12 Ø. 18.69 9102609 01 13 Ø. 21.09 2658279 01 TOTALS Ø. 173134281 INPUT OVERRANGE AT RT= 4.77 PID 09/10/87 05:11:43 CH= "B" PS= 1. FILE 1. METHOD 5. RUN 565 INDEX ANALYST: KWK NAME PPB RT AREA BC RF Ø. 6.11142796 01 3AP6 Purje 8xc 2 9.36 Ū. 172798 01 3 Ø. 13.1 109615 01 4 Ū. 18.58 85096 01 5 Ø. 20.98 138101 01 TOTALS 0. 698406 CHANNEL A INJECT 09/10/87 05:53:42 4.23

6.19




7.96

8958103 02


```
FILE 1.
 METHOD 5.
 RUN 592
 INDEX
ANALYST: KWK
NAME
 PPB
 RT
 AREA BC
 1
 ø.
 0.65
 498533 02
 2
 1.15
 475725 02
 Ũ.
 3
 1.3
 Ū.
 1227197 02
 4
 2.25
 6848232 02
 Ū.
 56
 Ū.
 2.88
 6711362 02
 3.53
 128096 02
 Ū.
 Ø.
 3.67
 453452 02
 8
 Ū.
 4.23
 4837126 03
 9
 Ũ.
 6.19
 40901 01
 10
 7.33
 9.
 25699 02
 11
 Ø.
 7.96
 8958103 02
 12
 8.74 11489967 02
 Θ.
 13
 Ø.
 9.1
 16018995 02
 14
 Ø.
 -10.22 13524864 02 ···
 15
 Ø.
 9472749 02
 11.1
 16
 _ 12.72
 Ø.
 7681575 02
 17
 Θ.
 13.17
 5023591 02
 _ 14. 02
 18
 Ũ.
 6294876 08
 19
 Ū.
 15.81
 4537 05
 20
 Ū.
 16.64
 1384083 06
 21
 Ø.
 18.65
 4907682 97
 22
 9.
 21.15
 20187 01
TOTALS
 Ø.
 106027532
INPUT OVERRANGE AT RT= 4.76
PID
 09/10/87 05:53:42
 CH= "B"
FILE 1.
 METHOD
 5.
 RUN 566
 INDEX
 1
ANALYST: KWK
MAME
 PPB
 RT
 AREA BC
 RF
 Ø.
 7.82
 226891 01
 Ø.
 105345 01
 9.4
 3
 0.
 12.56
 59396 02
 4
 ø.
 13.55
 366539 03
 5
 Ū.
 19.85
 113115 01
 Θ.
 22.75
 676396 91
TOTALS
 Θ.
 1547502
CHANNEL A INJECT
 09/10/87 06:35:38
```

2.30

.72



	•				3.		
	PID		09/1	0/87 11:43:51	CH=	"B" PS= 1	-
	FILE 1.	метнор 5.	RUN 57	4 INDEX	1		
	ANALYST: KWK						
,	NAME	PPB	RT	AREA BC	RF R	FROMUTIC A	Λi×
	1 2 3 4 5 6	0. 0. 0. 0. 0.	9.4 13.54 19.84 20.94 22.7 26.18	161157 01 1135225 01 1283320 01 1118250 01 974139 01		txylenes 10 ppb	
:	8 9	9. 0. . 0.	26.94 29.84 30.86	2077419 03 1029810 02 1759429 03			
	TOTALS	0.		10491527	-		
	HALL	· .	09/1	0/87 11:43:51	CH=	"A" PS= 1	
	FILE 1. ANALYST: KWK	METHOD 5.	RUN 60	10 INDEX	1		
1	HHILTSI • KMK						
	NAME	PPB	RT	AREA BC	RF		
1	1 2 3 4 5 6	0. 0. 0. 0. 0.		339530 02 11711563 03 3722772 01 57568 01 152317 02 18148165 03			
	TOTALS	ø.		34131915 .			
:					Palo A	1041084 NO	w V
ı							
	CHANNEL B	INJECT 09/10	)/87 12:	24:09		· ·	
	5, 64 7.1	<u>68</u> 64				į.	
	) 12.00	. 99					



· /-1,-72 TOTALS ũ. 157554 CHANNEL A INJECT 09/10/87 05:11:43 . 64 4.22 10.59 12.49 13.23 13.92 21.09 IALL CH= "A" PS= 09/10/87 05:11:43 FILE METHOD 1. 5. **RUN 591** INDEX 1 MALYST: KWK IAME PPB RT RF AREA BC 0. 0.64197207 03 Ø. 3.31 146944 02 395 7658.7 0. ALL 4.22 13773963 08 4 5.71 8230925 06 O. CHUZEL 6.22 9504116 7.34 10523192 Use for peak I.D. only G. 1, 1201 96 O. HOCA - 日日 ハリカ 0. (ml/had) 8. 78 72031749 06 8 B. ((14 -10.59 11029092 06 105% 0.17 Dep 12.4 8401219 06 112 3,773,850 06 كاري 13.23 10 B. TLE 11 0.117 KA CHURG 13. 92 17,761,136 97 12 **9.** ⊬∞c 18.69 9102609 01 13 0. (15.au. - 21.09) 2658279 01 OTALS Ø. 173134281

**U.** 

9.38

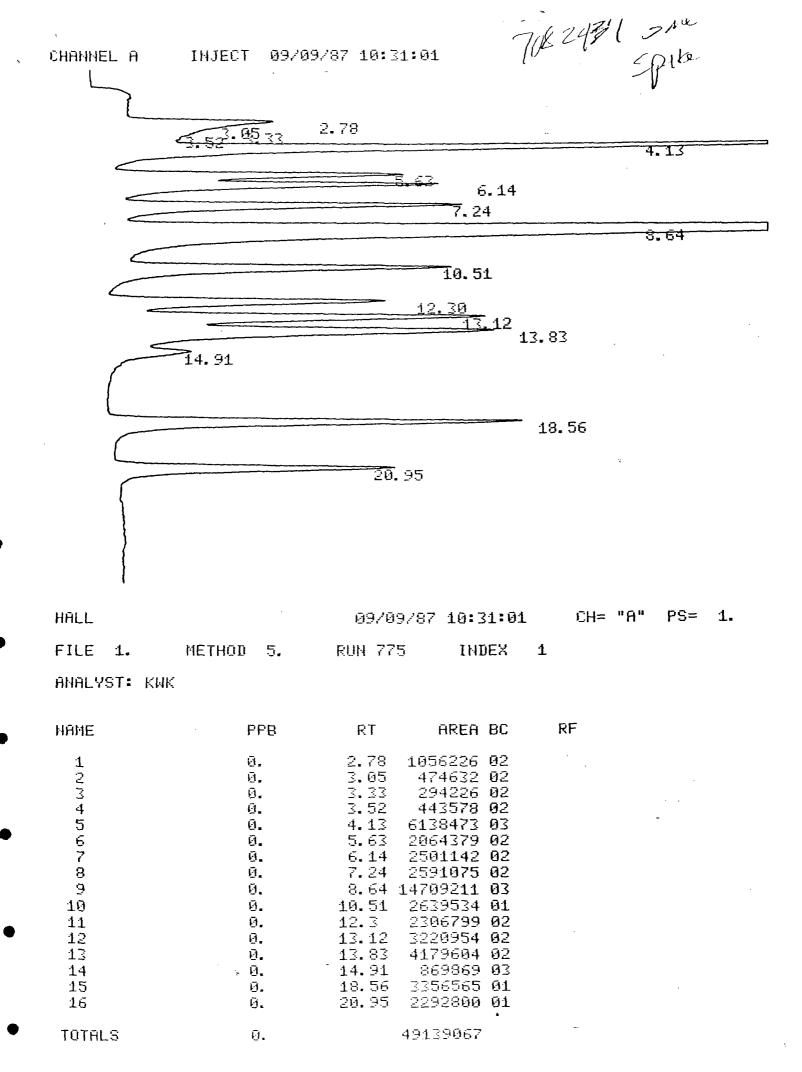
DPA Ste Wex CHANNEL B INJECT 09/16/87 13:09:42 8.95 **13.** 53 19.84 22. 27 ER 0 INPUT OVERRANGE AT RT= 4.63 09/16/87 13:09:42 CH= "B" PS= 1. PID METHOD 5. FILE 1. RUN 544 INDEX 1 ANALYST: KWK . MAME RT AREA BC RF PPB 8.95 535856 01 Ø. 3 60716 01 13.53 Ø. 40280 01 19.84 Ø. Ø. 22, 27 258803 01 TOTALS 895655 Ū. 09/16/87 13:09:42 CH= "A" PS= 1. HALL

RUN 569

INDEX

ANALYST: KNK

METHOD 5.


FILE

FID		Ø9/16/	/87 13:09:42		CH= "B"	PS=	1.
FILE 1.	METHOD 5.	RUN 544	INDEX	1			
ANALYST: KWK				·			
HAME	PPB	RT	AREA BC	RF	<del>-</del>	,	
1 2 3 4	0. 0. 0. 0.	8.95 13.53 19.84 22.27	535856 01 60716 01 40280 01 258803 01	1	NEK		
TOTALS	0.		895655				
HĀLL		09/16.	/87 13:09:42	: -	CH= "A"	PS=	1.
HALL FILE 1.	METHOD 5.	09/16 RUN 569		1	CH= "A"	PS=	1.
					CH= "A"	PS=	1.
FILE 1.						PS=	1.
FILE 1. ANALYST: KWK		RUN 569 RT 0.62 1.48 4.1 2	INDEX	1		PS=	1.

71082427 5 ml 10 min prije

CHANNEL B INJECT 09/16/87 14:00:59

10.70



ANALYST: KWK

NAME	PPB	RT	AREA	BC	RF	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	9. 9. 9. 9. 9. 9. 9.	2.78 3.05 3.33 3.52 4.13 5.63 6.14 7.24 10.51 12.3 13.12 13.95 18.56 20.95	1056226 474632 294226 443578 6138473 2064379 2591142 2591975 14709211 2639534 2306799 3220954 4179604 869869 3356565 2292800	02 02 02 03 02 02 03 01 02 03 01 01	7	082437 Spike
TOTALS	Ũ.		49139067			

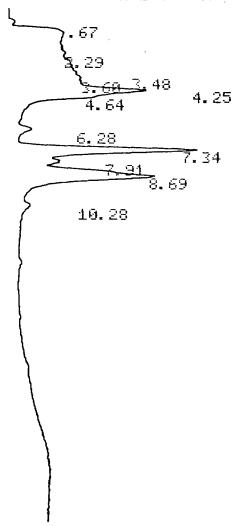
INPUT OVERRANGE AT RT= 4.6

PID 09/09/87 10:31:01 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 745 INDEX 1

ANALYST: KWK

HAME	PPB	RT	APEA BC	RF	
1	ũ.	5.82	39 <b>555 02</b>		
2 3	0.	6.03	34433 03		
3	Ũ.	9.28	653962 <b>02</b>		
4	Ũ.	10.8	87173 03		
5	Ø.	12.99	36265 <b>02</b>	•	
5 6	Ũ.	13.44	71767 03		
7	Ø.	18.46	31446 01		
8	0.	19.73	78426 01		-
. 8 . 9	0.	20.85	136205 01		
10	ø.	22.59	67516 <b>01</b>		
TOTALS	ø.		1236748		


NAME PPB RT AREA BC RF

TOTALS 0.

1188427 5 ML

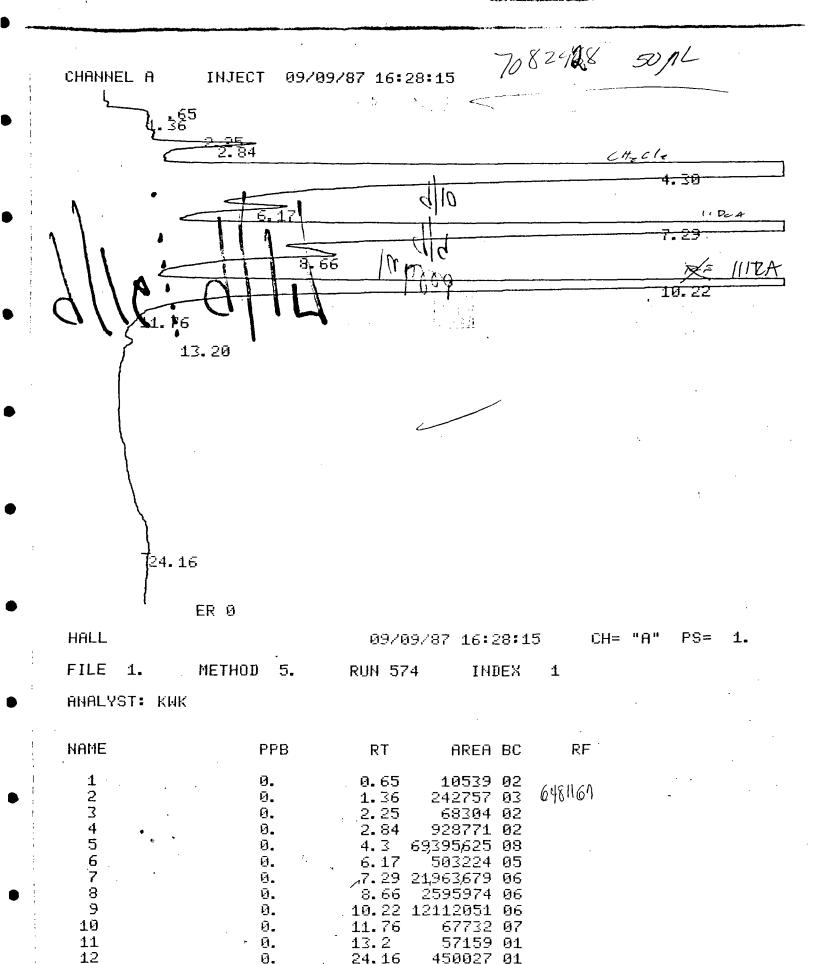
PLOT "A" AUTO

CHANNEL A INJECT 09/09/87 15:12:14



HALL 09/09/87 15:12:14 CH= "A" PS= 1.

FILE 1. METHOD 5. RUN 572 INDEX 1


ANALYST: KWK

NAME	PPB	RT	AREA BC	RF
1 2 3 4	ି. ଡି. ଡି. ଡି.	0.67 2.29 3.48 3.6	21037 03 13011 02 45401 02 9391 03	
5	0. -	4.25	619026 02	

HALL 09/09/87 15:12:14 CH= "A" PS= 1. FILE 1. METHOD 5. RUN 572 INDEX 1 ANALYST: KWK RF HAME PPB RT AREA BC 0.67 21037 03 1 Ũ. 2345678 Ø. 2.29 13011 02 3.48 Ø. 45401 02 3.6 9391 03 Ø. Ø. 4.25 619026 02 O. 4.64 106560 03 6.28 82510 01 Ø. **7.**34 1395620 02 -Ū. 9 7.91 282482 02 Ø.  $1\overline{9}$ 8.69 1716356 03 Ø. 10.28 11 32190 01 Ð. TOTALS 4323584 Ø. INPUT OVERRANGE AT RT= 4.74 PID 09/09/87 15:12:14 CH= "B" PS= 1. FILE 1. METHOD 5. RUN 546 INDEX 1 ANALYST: KWK MAME PPB RT AREA BC RF 1 Ø. 9.39 273666 02 Й. 10.7 75467 03 TOTALS Ø. 349133 CHANNEL A INJECT 09/09/87 15:51:21

10.40

7ZE



TOTALS 0. 108395842

```
24.16
ER Ø
```

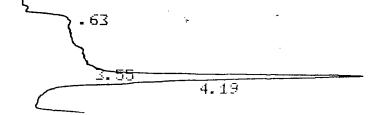
HALL 09/09/87 16:28:15 CH= "A" PS= 1.

FILE 1. METHOD 5. RUN 574 INDEX 1

ANALYST: KWK

NAME	PPB	RT	AREA BC	RF	
1 2 3 4 5 6 7 8 9 10 11	0. 0. 0. 0. 0. 0. 0.	1.36 24 2.25 6 2.84 93 4.3 6933 6.17 56 7.29 2196 8.66 253 10.22 1211 11.76 6	.0539 02 12757 03 18304 02 28771 02 15625 08 13224 05 13679 06 15974 06 12051 06 17732 07 17159 01	6481161	7082428
TOTALS	0.	10839	95842		ч

INPUT OVERRANGE AT RT= 4.67


PID 09/09/87 16:28:15 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 548 INDEX 1

ANALYST: KWK

NAME	PPB	RT :	AREA BC	RF	
1 2	0. 0.	9.39 10.67	280741 02 83268 03		
TOTALS	0.		364009	708241891	+ .5 ml

CHANNEL A INJECT 09/09/87 17:10:38



7082424 Nout CHANNEL A INJECT 09/10/87 09:33:28 . 64 2.86 6, 19 9.17 10.24 111-491.54 13.22 (13. 70

HALL 09/10/87 09:33:28 CH= "A" PS= 1.

FILE 1. METHOD 5. RUN 597 INDEX 1

ANALYST: KWK

NAME	PPB	RT	AREA	•	RF	-
1	Ū.	0.64	19580	03		
2 3	9.	2.86	712025	92		
3	Ð.	- 4.17	364,98,033	98		
4 .	Ð.	5.62	11291	<b>9</b> 6	-d	
5	9.	$\sim 6.19$	4215084	96		
5 6 7	0.	7.35	52969847	96		
	0.	7.93	34519489	96		
8 9	0.	² 9.17	5517238	<b>06</b>		
9	0.	10.24	7958253	96		
10	0.	11.4	75532	96		
11	Ø.	11.54	65053	96	-	
12	Ō.	11.74	13496	_		
13	ē.	√13.22	398136			

ANALYST: KWK

NAME	PPB	RT	AREA	BC	RF
1 2 3 4 5 6 7 8 9 10 11 12	0. 0. 0. 0. 0. 0. 0.	0.64 2.86 4.17 5.62 6.19 -7.35 7.93 79.17 10.24 11.4 11.54 11.74	19580 712025 36498033 11291 4215084 52969847 34519489 5517238 7958253 75532 65053 13496	03 02 08 06 06 06 06 06 06	7082429
13 14	· 0. 0.	∕13.22 18.7	398136 64661		
TOTALS	ø <b>.</b>	1.	42737 <b>718</b>		

INPUT OVERRANGE AT RT= 4.65

PID 09/10/87 09:33:28 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 571 INDEX 1

ANALYST: KWK

NAME	PPB	RT	AREA	BC I	₹F	
1 2 3 4 5 6 7 8 9	0. 0. 0. 0. 0. 0. 0.	0.53 6.09 7.8 9.39 10.43 23.5 24.48 25.15 27.07	141056 1649617	01 01 02 03 02 02		
TOTALS	0.		3156326			1

708.2430 50 pl

CHANNEL A INJECT 09/10/87 10:20:37

9.39 280741 02 10.67 83268 03

2 0. 10.67 83268 03

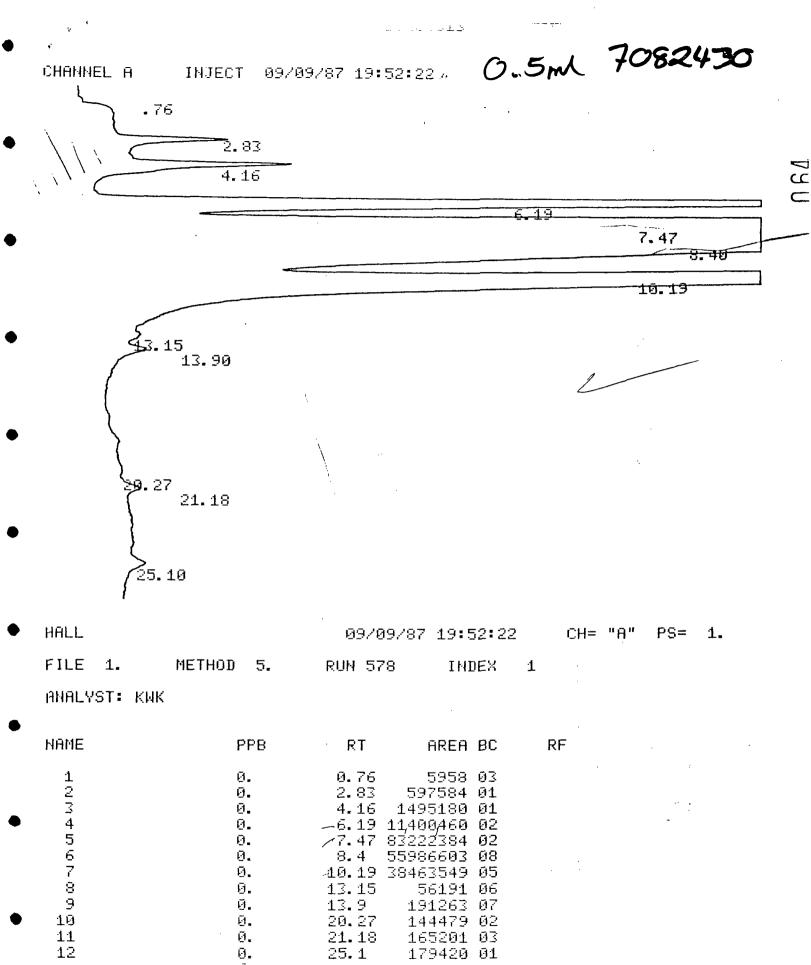
TOTALS 0. 364009 70829189 4.5 mi

Ø.

CHANNEL A INJECT 09/09/87 17:10:38 .63 7. 31 78.*8*643 10.24 13.20

HALL 09/09/87 17:10:38 CH= "A" PS= 1

FILE 1. METHOD 5. RUN 575 INDEX 1


ANALYST: KWK

1

NAME	PPB	RT	AREA	BC	RF
1 2 3 4 5 6 7 8	9. 9. 9. 9. 9. 9.	0.63 3.55 4.19 6.23 -7.31 7.94 8.43	18951 362018 2914458 315568 4985305 2451712 645913 1829304	02 03 02 02 02 02	7091068 7041686

. !	ļ					
(m. )	HALL		09/09/	<b>87 17:10:</b> 38	CH= "A"	PS= 1.
<u>(_)</u>	FILE 1.	METHOD 5.	RUN 575	INDEX	1	
Carl Car	ANALYST: KW	<				1-6
	NAME	PPB	RT	AREA BC	RF 708	2429
	1 2 3 4 5 6 7 8 9 10 11	9. 9. 9. 9. 9. 9. 9.	4.19 2 6.23 7 -7.31 4 7.94 2 8.43 8 8.66 1 9.14	18951 03 362018 02 914458 03 315568 02 985305 02 451712 02 645913 02 829304 02 776412 02 727375 03 25018 01	70406	8 50 µl
	TOTALS	0.	15	052034		
					4	
	INPUT OVERR	ANGE AT RT=	4.71			
	PID		09/09/	87 17:10:38	CH= "B"	PS= 1.
<u> </u>	FILE 1.	METHOD 5.	RUN 549	INDEX	1	
	ANALYST: KW	К				
	наме	PPB	RT	AREA BC	RF	
	1 2 3 4 5	0. 0. 0. 0.	7.6 7.82 9.39 10.62 25.18	224626 02 58114 03 264583 02 86326 03 155753 01		
: : :	TOTALS	ø.		789402		
	CHANNEL A	INJECT 09/0	9/87 17:52	2:23		
; ; ;		63 <del>7-72</del> 4 24			/	· ·
;		4.24			, (	<i></i> .

है. 72



191908272

TOTALS

Ũ.

HALL		09/10/	87 10:20:37	CH= "A" PS= 1.
FILE 1.	METHOD 5.	RUN 598	INDEX	1
ANALYST: K	MK			
наме	PPB	RT	AREA BC	RF 7
1 2 3 4 5 6 7	0. 0. 0. 0. 0. 0.	4.17 1 6.22 7.3 13 8.72	402911 02 207835 02 144391 03 488759 02 964490 08 313647 05 717817 05	7082930 50/16
TOTALS	Ø.	19	239 <b>850</b>	. **
THPHT OVER	RANGE AT RT=	4 EQ		
THI OF DAFK	KNINGE AT KI-	4.03		
PID		09/10/	87 10:20:38	CH= "B" PS= 1.
FILE 1.	METHOD 5.	RUN 572	INDEX	
ANALYST: K	MK			
NAME	PPB	RT	AREA BC	RF
1	ø.	9.39	148929 <b>01</b>	- C-1127 100xt
TOTALS	Ø.		148929	.7082432 Mest.
CHANNEL A	INJECT 09/	10/87 11:02	:14	
	4.24			
<u> </u>	6. 23 96	7.31		 -
<u> </u>	36		3. 42	
				10.20
		÷		<i></i>
l l				
				<u>/</u> .

( ( (

```
7.34

7.34

8.76

10.26
```

```
HALL 09/16/87 11:04:10 CH= "A" PS= 1.
```

FILE 1. METHOD 5. RUN 566 INDEX 1

ANALYST: KWK

NAME	PPB	RT	AREA BC	RF	
1	0.	<b>0.</b> 68	19143 02		
2	0.	1.57	287033 03		
3	Ø <b>.</b>	3.71	426869 02		
4	9.	4.22	845010 03		
5	0.	7.34	151491 01		
6	9.	8.76	493445 01		
7	0.	10.26	220482 01		
TOTALS	0.	:	2443473		-

INPUT OVERRANGE AT RT= 4.7

PID 09/16/87 11:04:10 CH= "B" PS= 1. FILE 1. METHOD 5. RUN 541 INDEX 1

ANALYST: KWK

ANALYST: KWK

NAME	PPB	RT	AREA BC	RF
1 2 3 4 5 6 7	ଡ. ଡ. ଡ. ଡ. ଡ. ଡ.	0.68 1.57 3.71 4.22 7.34 8.76 10.26	19143 02 287033 03 426869 02 845010 03 151491 01 493445 01 220482 01	7082431
TOTALS	0.		2443473	

INPUT OVERRANGE AT RT= 4.7

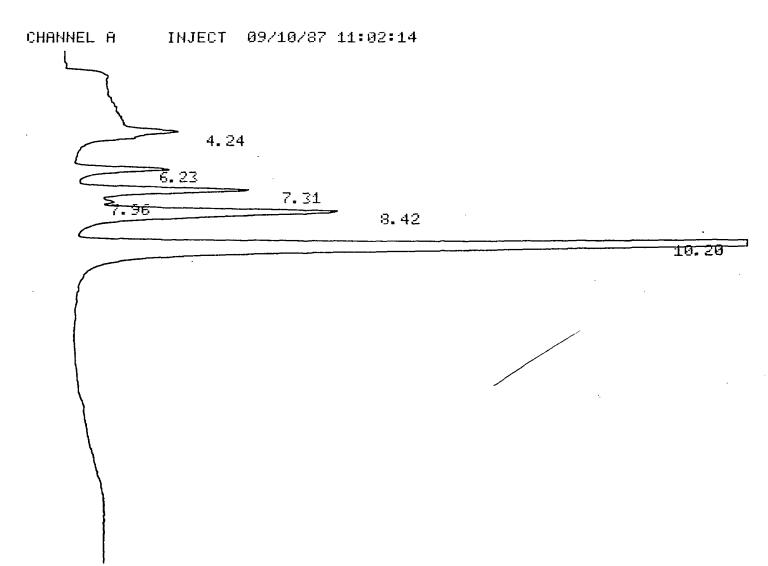
PID 09/16/87 11:04:10 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 541 INDEX 1

ANALYST: KWK

NAME	PPB	RT	AREA	BC	RF
1 2 3	0. 0. 0.	0.53 9.44 10.72	19548 168249 85228	02	
TOTALS	Θ.		273025		:

4.16


CHANNEL A INJECT 09/16/87 11:45:49

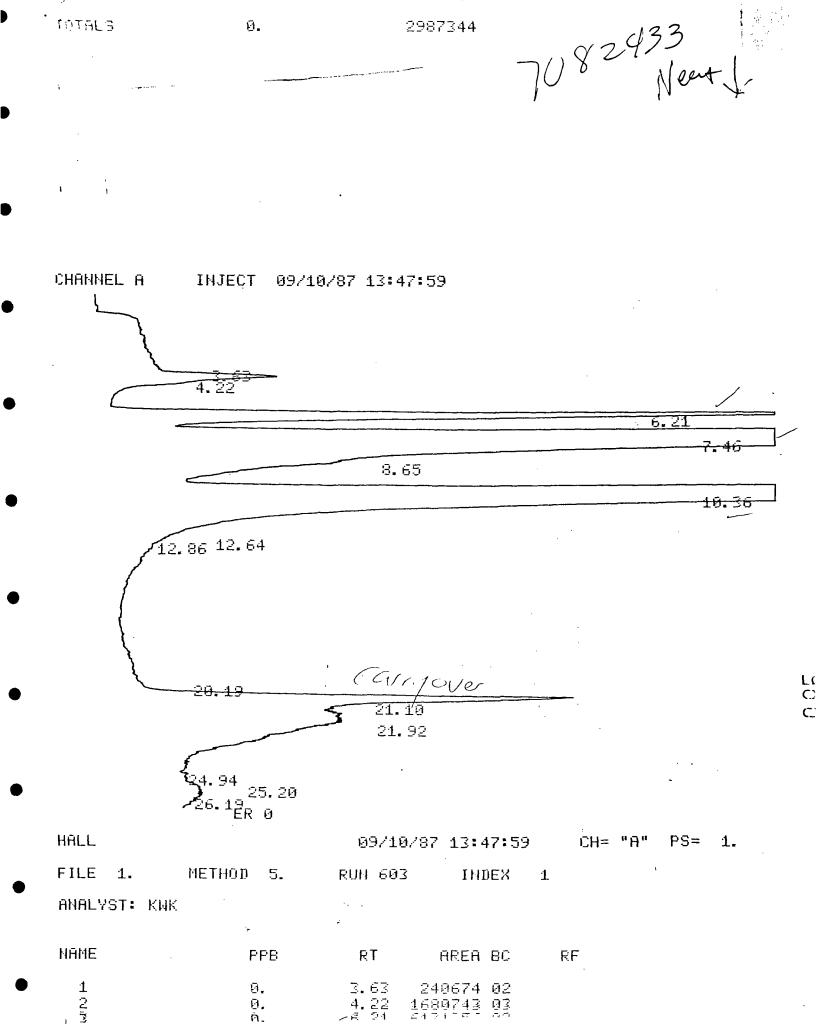
MALD WED

9.42

Ø.

7082432 News + 148929



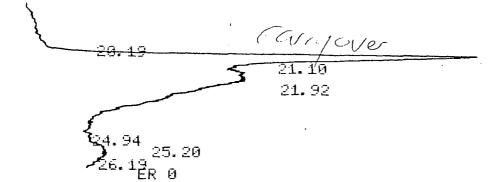

09/10/87 11:02:14 CH= "A" PS= 1. HALL

FILE 1. METHOD 5. RUN 599 INDEX 1

ANALYST: KWK

NAME	PP8	RT	AREA	BC	RF
1 2 3 4 5 6	0. 0. 0. 0. 0.		1547470 649175 1287050 213837 2847397 11208150	01 02 02 03	
TOTALS	0.		17753079		

INPUT OVERRANGE AT RT= 4.72




31.1 23473**7 01** 

ಲ•

0.

TOTALS



FILE 1. METHOD 5. RUN 603 INDEX 1

HALL 09/10/87 13:47:59 CH= "A" PS= 1.

ANALYST: KWK

						1123
NAME	PPB	RT	AREA	BC	RF	7082433
1	0.	3.63	240674	02		10
2	0.	4.22	1680743	93		
2 1 3	ũ.	-6.21	6131756	92		
4	0.	77.46	82428716	98		
5 6 7	Õ.	8.65	4279	<b>9</b> 5		
6	0.	10.36	70364243	96		
7	0.	12.64	25808	96		
8	Ð.	12.86	2189	97		
8 9	Ø.	20.19	11763	02		
10	Ð.	21.1	5366989			
11	Ø.	21.92	6449933			
12	0.	24.94	117612	02		
13	0.	25.2	89518	02		
14	Ø.	26.19	347862	93		
TOTALS	Ø.	<u>-</u>	173262076		ı	

## INPUT OVERRANGE AT RT= 4.73

PID 09/10/87 13:47:59 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 577 INDEX 1

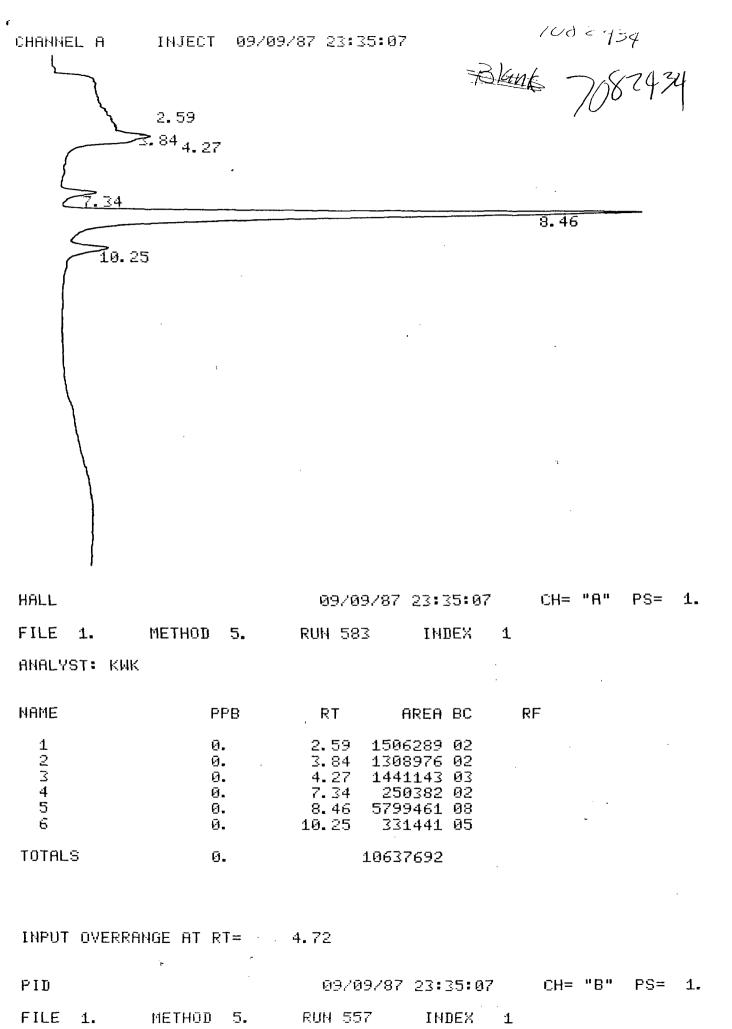
ANALYST: KWK

NAME	PPB	RT	AREA	вс	RF:
1 2 3 4 5 6 7	0. 0. 0. 0. 9. 0.	0.54 6.09 9.42 13.52 20.48 20.96 22.22	7855 73167 139721 73064 325 271619	01 01 01 02 02	

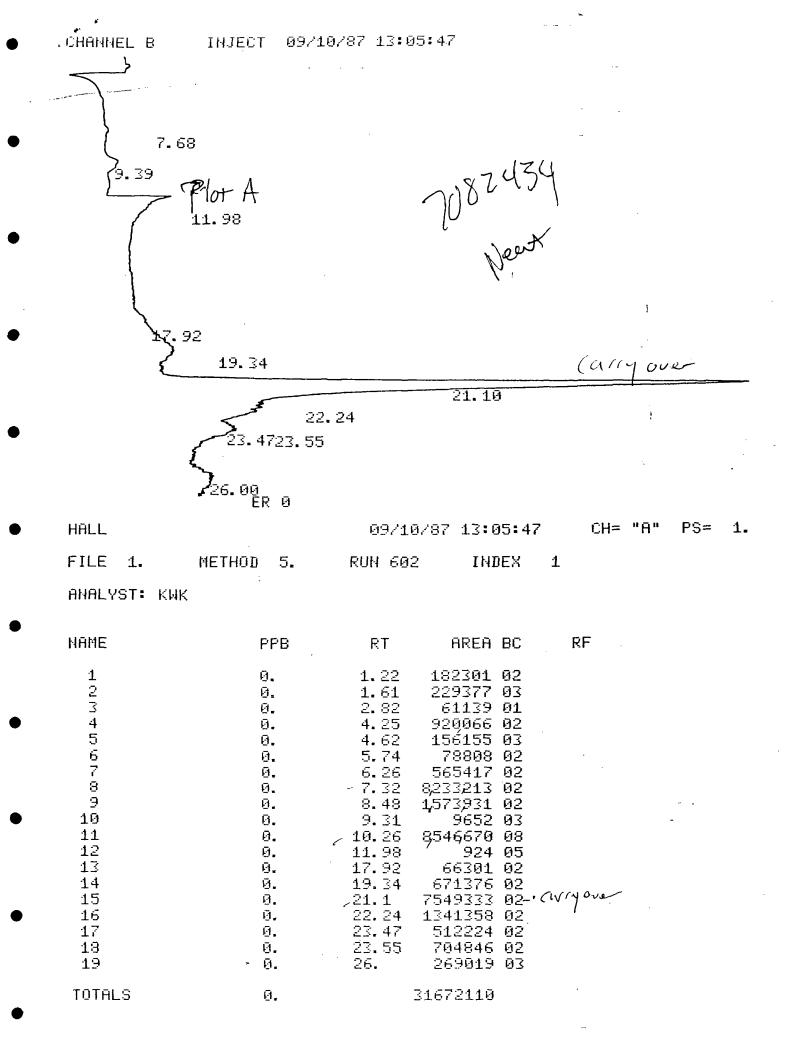
TOTALS 0. 894573

(C

PID


INPUT OVERRANGE AT RT=

ga kan kan hili mili


4.74

r ige i	יר תהטון.	SOU NUM	THREA	1	
ANALYST: KWK					
NAME:	PPB	RT	AREA BC	RF	
1 2 3 4 5	Й.,	4.19 11 6.2 2 7.31 45 8.43 91 10.24 45	220030 01 564763 02 363761 08		
TOTALS	Ð.	201	98 <b>0228</b>		
INPUT OVERRANO	E AT RT=	4.74			
PID		09/09/	87 22:53:0	7 CH= "E	3" PS≃
FILE 1.	IETHOD 5.	RUN 556	INDEX	1.	
ANALYST: KWK					
NAME	PPB	RT	AREA BC	RF	
1	Ø.	9.39	328538 01		
TOTALS	Ø.		328 <b>538</b>		
CHANNEL A	INJECT 09/	'09/87 <b>23:</b> 35	<b>:</b> 07	7082	? 434
			7	Blank	
4	2.59				
	.84 4.27			•	
7.34			<del></del>	8.46	
<b>10.</b> 25					
\					
1					

.



ANALYST: KWK

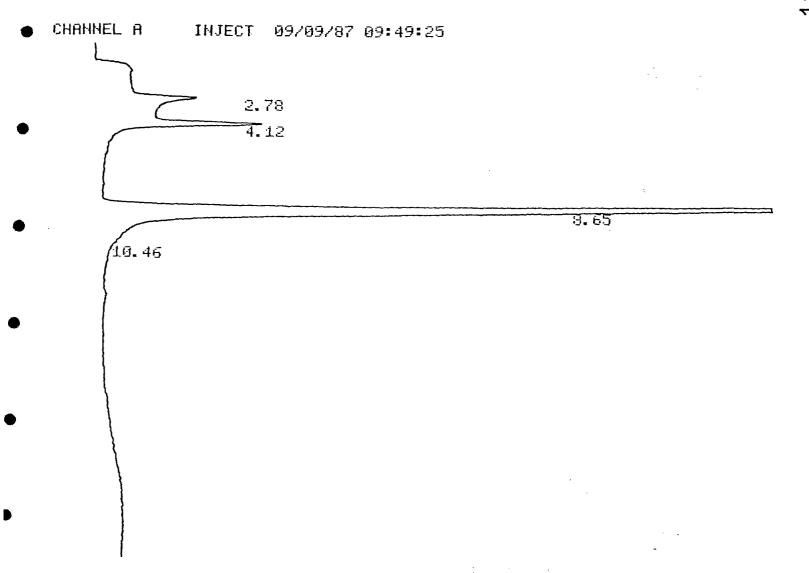


5	=
C	3
C	_

NAME	PPB	RT	AREA	BC	RF	
1	0.	1.22	182301	02	=	
2	Ø.	1.61	229377	03		
3	Ð.	2.82	61139	01		7434
4	0.	4.25	920066	02	718	2434
5	Ø.	4.62	15 <i>é</i> 155	03	10	
6	0.	5.74	78808	92	l	
7	0.	6.26	565417	02		
8	0.	- 7.32	8,233,213	<b>0</b> 2		
1 2 3 4 5 6 7 8 9	Ð.	8.48	1,573,931	02		
10	0.	9.31	9652			
11		₂ 10.26		08		
12	Ø.	11.98	924			
13	0. 0. 0.	17.92	66301			
14	0.	19.34	674776	രാ		•
15	ø.	21.1	7549333	92-16	Wyove	-
16	0.	22, 24	1341358	02	1	
17	ē.	23.47	512224	92 92		
18	ē.	23.55		02		
19	ē.	26.	269019	03		
	~·*	_0.	200043	~ <i>-</i>		
TOTALS	0.		31672110		:	. 4

INPUT OVERRANGE AT RT= 4.72

PID 09/10/87 13:05:47 CH= "B" PS= 1.


FILE 1. METHOD 5. RUN 576 INDEX 1

ANALYST: KWK

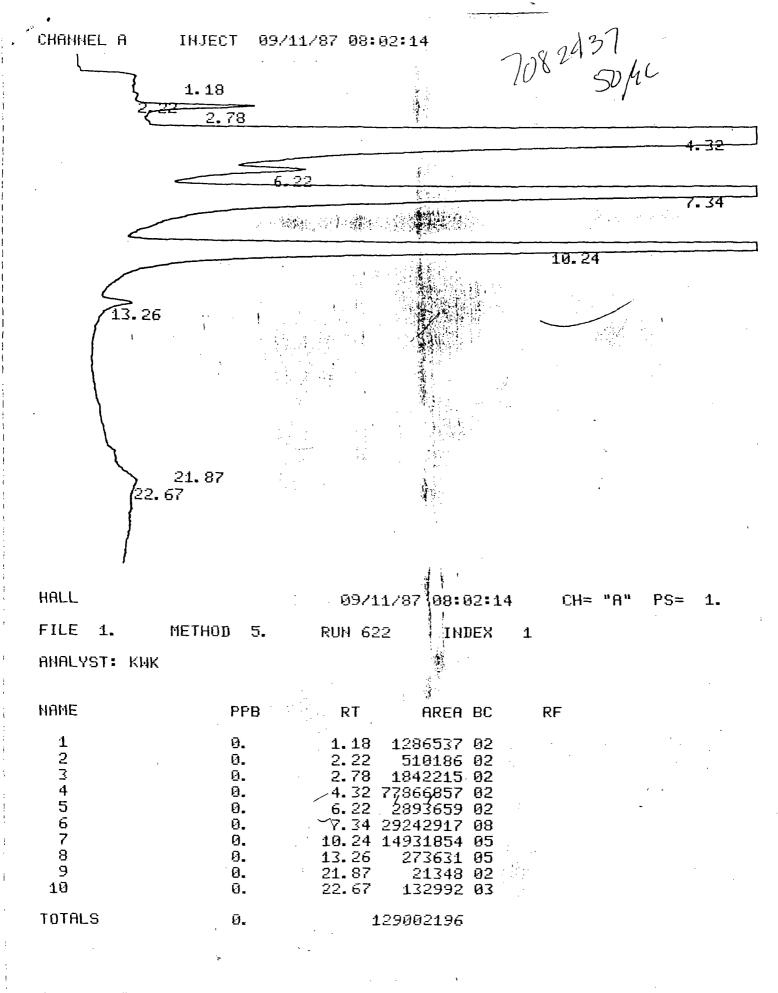
NAME	PPB	RT	AREA	BC	RF
1	ø.	7.68	27059	Ø1	
2	Ø.	9.39		91	
3	Ø.	<b>1</b> 3.52	169988	01	
4	0.	20.38	19093	02	
5	Ø.	20.96	584726	<i>0</i> 2-	
6	9.	22.14	1387677	02	
7	0.	22.99	409465	Ø3	
8	0.	31.1	234737	<b>01</b>	
TOTALS	Ø.		2987344		•
					(

7082433 News J.

7082437 SM



HALL


09/09/87 09:49:25 CH= "A" PS= 1.

FILE 1. METHOD 5. RUN 774 INDEX 1

ANALYST: KNK

NAME	PPB	RT	AREA	BC	RF
1 2	0. 0.	4.12	363 <b>741</b> 683 <b>062</b> 7694619	91	-

¢				·		
	HALL		Ø9/Ø9	/87 09:49:25	CH= "A	" PS= 1
1	FILE 1. METHO	OD 5.	RUN 774	INDEX	1	
	ANALYST: KWK			·		
	NAME	PPB	RT	AREA BC	RF	
1. L 1. L 1. L 1. L 1. L	1 2 3 4	0. 0. 0. 0.	4.12 8.65	363741 01 683062 01 7694619 08 3024 05	708243	37
	TOTALS	0.		8744446		
	INPUT OVERRANGE AT	r RT=	4.28		<del>-</del>	
!	PID		09/ <b>0</b> 9	/87 09:49:25	CH= "B	" PS= 1.
- ! - :	FILE 1. METHO	OD 5.	RUN 744	INDEX	1	
1	ANALYST: KWK				τ	
	NAME	PPB	RT	AREA BC	RF	
1	1 2	0. 0.		318936 01 163624 01		
	TOTALS	Ø.		482560	πM	- 20
: : : ;	CHANNEL A INJE	ECT 09/09	V87 10:3	:1:01	708 2437	Spla
		3. <del>05</del> ₹₹	2.78			
; ; !	<del>9.52</del>	3. 63. 44				4.13
) ( ! !				6.14 7.24		
!						8.64
				10.51		
				12.30 13.12		
	14.91	1		1	13.83	
i		-				
,					18.56	
				-		



INPUT OVERRANGE AT RT= 4.17

PID

GO MA YOU CONTR

21.87 22.67

HALL

09/11/87 08:02:14 CH= "A" PS= 1.

FILE 1. METHOD 5.

RUN 622 INDEX 1

ANALYST: KWK

NAME	PPB	RT	AREA	вс	RF
1 2 3 4 5 6 7 8 9 10	0. 0. 0. 0. 0. 0. 0.	1.18 2.22 2.78 4.32 6.22 7.34 10.24 13.26 21.87 22.67	1286537 510186 1842215 77866857 2893659 29242917 14931854 273631 21348 132992	02 02 02 02 05 05 02	7082437
TOTALS	Đ.	1	129002196		

INPUT OVERRANGE AT RT= 4.17

PID

09/11/87 08:02:14 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 596 INDEX 1

ANALYST: KWK

NAME

PPB RT AREA BC RF

1

9.7

202314 01

TOTALS

0.

202314 ---

CHANNEL A INJECT 09/11/87 08:51:17

2.19

<del>4</del>. 16

7091182 m)

HANNEL A INJECT 09/10/87 23:58:10

Ø.

. 62 2. 28 2. 86 4. 05⁵⁸ 3. 77

7082438

}

(21. 16

HALL

09/10/87 23:58:10 CH≃ "A"

PS= 1.

FILE 1. METHOD 5. RUN 617 INDEX 1

ANALYST: KWK

MAME PPB RF RT AREA BC 0. 0.62 74491 03 234567 2.28 Ø. 4043 01 2.86 Ø. 92791 02 Ø. 3.58 352171 02 Ø. 3.77 191164 02 ø. 4.05 343469 03 Ø, 8.75 56829 01 Ū. 21.16 397501 01 TOTALS 1512459 Ū.

4.17

				•	
HALL		09/10/87	23:58:10	CH= "A" PS= 1.	
FILE 1.	METHOD 5.	RUN 617	INDEX 1	 <u>L</u> :	
ANALYST: KWK					
NAME	PPB	RT A	REA BC	RF	
1 2 3 4 5 6 7 8	0. 9. 9. 9. 9. 9.	2.28 4 2.86 92 3.58 352 3.77 191 4.05 343 8.75 56	491 03 043 01 791 02 171 02 164 02 469 03 829 01	708 2438	
TOTALS	Ø.	1512	459		
INPUT OVERRAN	IGE AT RT=	4. 17			
PID		09/10/87	23:58:11	CH= "B" " PS= 1.	
FILE 1.	METHOD 5.	RUN 591	INDEX :	L	
ANALYST: KWK					
HAME	PPB	RT F	IREA BC	RF	
1 2	ម. ម.		1780 01 .968 <b>01</b>		
TOTALS	0.	3987	748		
CHANNEL A	INJECT 09/:	11/87 00:46:56			
			K	7805/0 · 5	
} ₹, 6	1.98 4			· 5	
	4.16				
<b>5.</b> 63		·			
			· ·	8.73 8.70	
\(\sigma_{11.1}^{\infty}\)	10.	27			
1	E1. 45	ŕ			
) 13.26	E1. 45	•			

```
- 99/10/87 22:39:33 CH= "B" PS≃ 1.
PID
FILE 1. METHOD 5. RUN 589 INDEX 1
ANALYST: KWK
NAME
 PPB
 RT AREA BC
 RF
 1
 Ð.
 9.63 128179 02
 2
 10.72
 66226 03
 Ø.
TOTALS
 194405
 Ū.
CHANNEL A
 INJECT 09/10/87 23:15:09
 7082439
 2.14
 5.64
 10, 24
 11.14
 13.25
 /20.80<sub>21.12</sub>
 09/10/87 23:15:09 CH= "A" PS=
HALL
FILE 1. METHOD 5. RUN 616
 INDEX 1
ANALYST: KWK
MAME
 RF
 PPB
 AREA BC
 RT
 1
 Ø.
 2.14
 225821 02
 3.17
 314143 02
 Ø.
```

3.85

141210 02

Ũ.

HALL 09/10/87 23:15:09 CH= "A" PS= 1. FILE 1. METHOD 5. RUN 616 INDEX 1 ANALYST: KWK AREA BC RF NAME PPB RT 2.14 225821 02. Ø. 314143 02 7082439 234567 3.17 Ø. 3.85 141210 02 Ø. Ū. 4.21 2534268 08 5.64 50763 05 Ø. Ū. 8.7 7767848 02 Ũ. 10.24 1447857 02 Ũ. 11.14 569432 03 9 13.25 63310 01 Ø. 19 Ø. 20.8 10178 02 Ø. 21.12 56733 03 TOTALS 13181563 Ø. INPUT OVERRANGE AT RT= 4.43 PID 09/10/87 23:15:09 CH= "B" PS≃ FILE 1. METHOD 5. RUN 590 INDEX 1 ANALYST: KWK NAME PPB RT AREA BC RF Ū. 9.63 139154 02 10.72 72967 03 Ũ. 43729 02 0. 20.67 Θ. 21.6 129831 02 23.66 1036023 03 TOTALS Ø. 1421704 CHANNEL A INJECT 09/10/87 23:58:10 .62 7082438

4. 85⁵⁸ 3.77



Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/30/87 Project No. JCO-104H

## Q.C. DATA REPORT

Analyst: J. Schwarz

Date of Analysis: 9/11/87 Method of Analysis: EPA 604

Detection Limit: 1.0

Units: ppb

Sample Number	Analyte	Original Res	sult <u>Duplic</u>	ate Result	% Deviation	
7092431	2 Chlorophe	nol < l		< 1	0.0	
Sample Number	Analyte	Sample Contribution	Spike Added	Spike Result	% Recovery	•
7092431	2 Chloro- phenol	< 1	68	74	109	

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director N_4 A_16 C_10 0.5

η 0.249 0.269

1333 16

```
2.542 B
1_6
```

FILE 91 - RUN 78 - STARTED 12:53.0 - 30/01/05 - 5 METHOD 1 - HIGH BOILERS - LAST EDITED 14:36.1 - 30/01/02

RT APEA

HEIGHT BC AREA PERCENT HEIGHT PERCENT

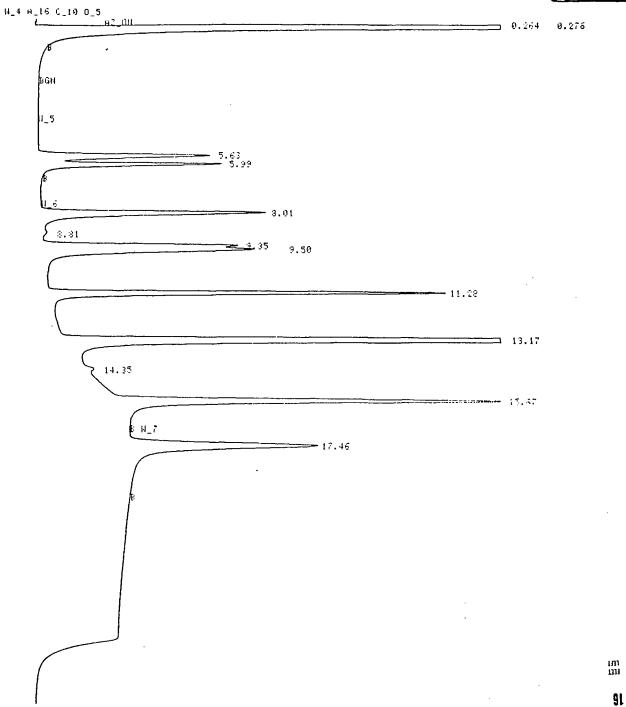
2.542 5569

0.7507 100.0000 100.0000

1 PEHK > HREA PEJECT \$569 TOTAL HPEH 1 PEAK > HEIGHT REJECT 0.7507 TOTAL HEIGHT

KETEDHPD DIPECTED EVENTS
TIME EVENT VALUE
1.741 Attn 8
17.447 Stop Data

FILE 92 RUN 79 STHRTED 13:13.6 80/01/05 % HETHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02


И_4 H_16 C_10 O_5 AZ_OH

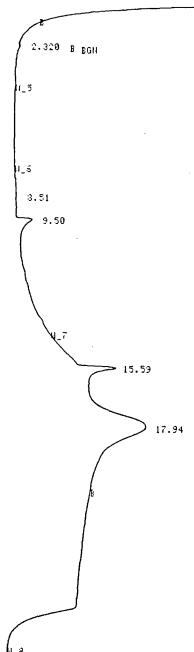
FILE 92 RUN 79 STARTED 13:13.6 80/01/05 % METHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02

0 FEAKS > HREA REJECT 0 TOTAL AFEA 0 FEAKS > HEIGHT FEJECT 0.8000 TOTAL HEIGHT

RETROARD DIRECTED EVENTS TIME EVENT. OHLUE 0.332 Stop Dafa

## 1) AE mix STD Phenols




FILE	75 RUN 63	STARTED 21:40	0.2 80/0	1/04	
% ME1	HOD 1 HIGH BOIL	LERS LAST !	EDITED 14	:36.1 80/01	/02
RT	AREA	HEIGHT	BC AR	EA PERCENT	HEIGHT PERCENT
5.63	486568	50.0344	U	5.1310	5.9915
5.99	419904	52.6036		4.4033	6.2938
8.01	930068	73.0601	U	9.7677	8.7488
8.81	8526	9.8327	U	0.0395	0.0997
9.35		14.5881	Ų		1.7469
9.50		13.7869	ij		1,6509
11.28	1247397	128.7807		13.1003	15.4212
13.17	3313362	309.5433	Ų	34.8006	37.0676
14.35	5443	1.7658	U	0.0570	0.2115
15.67	1841575	123.3249		19.3404	15,4265
17.46	1266559	61.2597		13.3015	7.3357
	7				
9	PEAKS > AFEA ÉI		9521392	TOTAL AREA	
11	PEAKS > HEIGHT	REJECT	835.0962	TOTAL HEIGH	IT

0

υ (

1331 1331

91



FILE 76 RUN 54 STARTED 22:26.3 89/01/04 % METHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02

RT	AREA	. HEIGHT BC	AREA PERCENT	HEIGHT PERCENT
8.51	1738	0.1618 U	0.0943	0.4430
9.50	193469	4.9203 U	5.6128	13.4781
15.59	233764	12.8269 U	12.6819	35.1383
17.94	1504332	18.5983	81.6111	50.9406

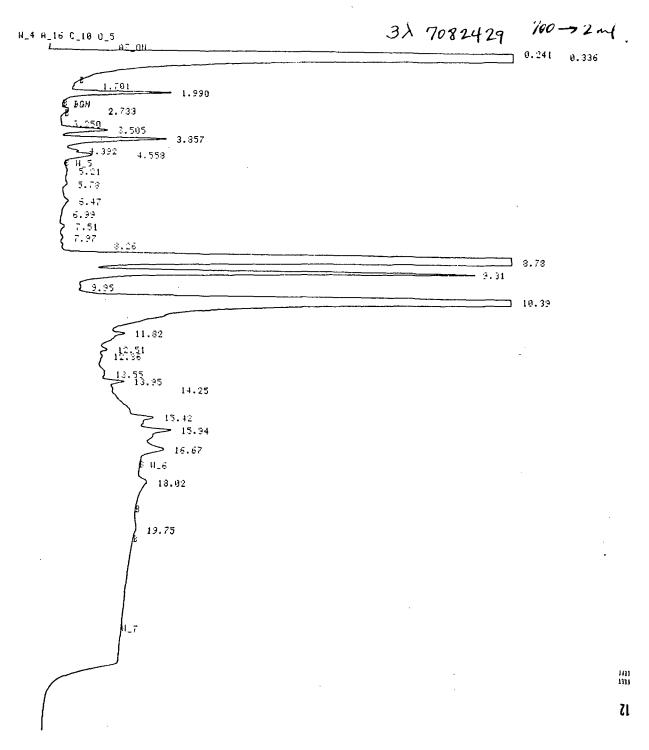
4 PEAKS > AFEH REJECT 4 PEAKS > HEIGHT REJECT 1843294 TOTAL AFEA 36.5098 TOTAL HEIGHT

. . .

12

na na

11




FILE 77 RUN 65 STARTED 23:02.3 80/01/04 % METHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02

RT	AREA	HEIGHT BC	AREA PERCENT	HEIGHT PERCENT
3.578	3369	0.4082	0.8373	1.9475
4.43	3036	0.2419 U	0.7545	1,1540
4.61	5897	0.5230 U	1.4655	2.4953
5.16	349	0.0437 U	0.0367	0.2037
5.49	4063	0.3254	1.0097	1.5524
7.51	8551	0.6813 V	2.1251	3,2507
8.12	1998	0.2241 U	0.4966	1.0695
3.46	2343	0.2635 U	0.5823	1.2309
8.86	74346	4.6837 U	18.4766	22.3475
9.44	6455	0.7559 U	1.6043	3.6063
9.77	14754	1,2888 U	3.6667	6.1495
19.53	265033	9.3626 U	65.8664	47.0573
11.13	10740	1.2748 U	2.6690	6.0824
11.43	1445	0.3766 U	0.3591	1.7968

14 PEAKS > AFEA REJECT 14 PEAKS > HEIGHT REJECT ¹402379 TOTAL AFEA 20.9584 TOTAL HEIGHT

m



FILE 73 RUN 65 STARTED 23:36.9 80/01/04 % METHOD 1 HIGH POILERS LAST EDITED 14:36.1 80/01/02

RT	AREA	HEIGHT BC	AREA PERCENT	HEIGHT PERCENT
2.733	20098	1.8203	0.1077	0.1686
3.250	790	0.1620 U	0.0050	0.0150
3.505	153553	14.9042 U	0.9753	1.3803
3.857	347945	33.6325 U	2.2043	3,1147
4.392	8067	1.5252 U	0.0512	0.1412
4.553	66494	6.0805	0.4223	0.5631
5.21	16815	0.8584 U	0.1069	0.0795
5.73	13287	1.0942 U	0.9844	0.1013
6.47	25464	1.6937 U	0.1619	0.1569
6.39		0.2037 U	0.0117	2.0121
7.51	15086	1.4384 U	0.0958	0.1332
7.97	7317	0.7639 V	0.0465	0.0767
8.26	େଶ୍ର	0.6036 V	0.0245	0.0559
3.73	7244102	495.0818 U .	46.0113	45.3434
9.31	1247605	124.4547 U	7.9043	11.5257
9.95	4834	0.6185 U	0.0311	0.0573
18.39	5957623	354.4029 U	37.8406	32.8230
11.82	81098	4.9575 "	0.5151	0.4591
12.51	20149	2.0340 U	0.1180	0.1884
12.35	12107	0.9233 U	0.0769	<b>0</b> .0355
13.55	20067	1.0853 "	0.1075	0.1005
13.95	49390	5.5324 !!	0.3193	0.5124
14.25	3476	0.4681 9	0.0221	0.0433
15.42	54946	6,2114 9	0.5325	0.5752
1 = 21	121519	9.2345 U	0.8377	0.2552

• U

C.

⊃ 0.241 g.357 2.314 B BGH 4.81 _P 5.44 B 1331 3.06  $\parallel$ 8.90 9.44 9.75 10.54 11.14 11.46

17.65 18.50

FILE 79 RUN 67 STARTED 00:12.3 80/01/05 % METHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02

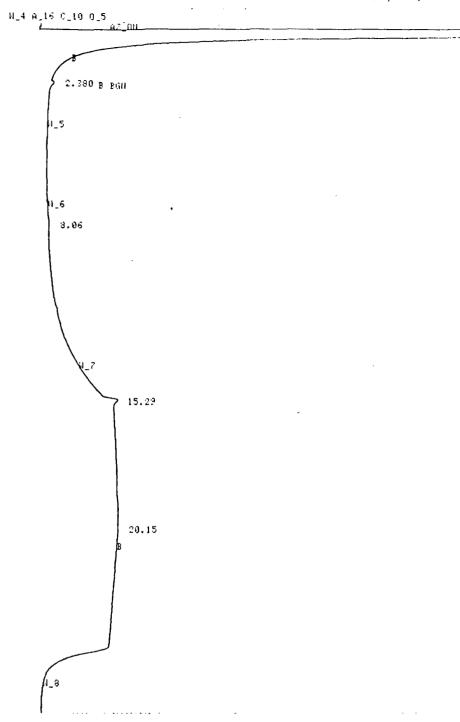
RT	AREA	HEIGHT BC	AREA PERCENT	HEIGHT PERCENT
4.81	2318	0.1916	0.2449	2.4943
5.44	2145	0.1369	0.2267	2.4333
8.06	8009	0.3901 U	0.8462	5.0783
8.90	31358	2.0716 U	3,3662	26.9677
9.44	2633	0.3118 U	0.2782	4.0592
9.75	3742	0.7050 V	0.9039	9.1777
19.54	14292	0.5985 U	1.5101	7.7909
11.14	7245	1.0096 U	0.7655	13.1435
11.46	1823	0.3036 U	0.1906	3.9516
17.65	835403	1.1717 9	83,2717	15.2528
18.50	31931	0.7413	3.3739	9.6507

11 PERKS > AREA PEJECT

11 PEAKS > HEIGHT PEJECT

-946339 TOTHL MREH 7.6817 TOTHL HEIGHT

1331 T133


N_4 A_16 C_10 O_5 0.240 0.350 2.289 B BGN 3.757 B W_5 1.5 3.03 B 18.99 20.79

FILE 80 RUN 68 STARTED 00:49.9 30/01/05 % METHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02

RT	AREA	HEIGHT BC	AREA PEPCENT	HEIGHT PERCENT
3.757	497	0.1302	1.5970	13,7410
3.03	5944	0.3107	19.1135	32.7923
18.99	13964	0.1653	44,9139	17.4491
20.79	10686	0.3412	34.3705	36.0176

4 PEAKS > AREA REJECT 31091 TOTAL AFEA 4 PEAKS > HEIGHT REJECT 0.9474 TOTAL HEIGHT

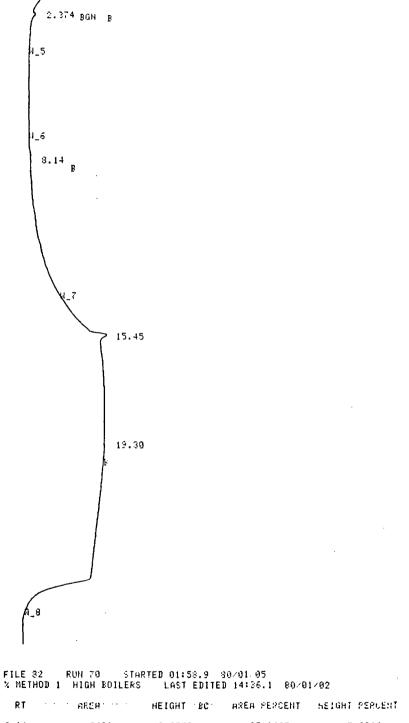
0.241 0.343



FILE 81 RUN 69 STHRTED 01:24.8 30/01/05 % METHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02

RT		í	AREA	нетент	BC	APE	A	PERCENT	HEIGHT	PERCENT
8.06 15.29 20.15			1476 1916 10463	0.1774 3.6777 0.1892			1.3	0.6532 0.8305 5.5163	90	.3861 .9364 .6775
_	PEAKS PEAKS		AREA PEJECT HEIGHT REJEC	Ţ				OTAL AREA OTAL HEIGH	ıT	

1321 1331


8

ЩI 1331

L

N_4 A_16 C_10 O_5

0.242 0.342



8.14 15.45 19.30 5409 912 0.2573 4.3557 U 25.2625 4.2606 70.4769 5.3293 90.4280 4.2427 15090 0.2048

3 PEAKS > APEA PEJECT 3 PEAKS > HEIGHT REJECT 21411 TOTAL AREA 4.8279 TOTAL HEIGHT

m 1334 9

N_4 H_16 C_10 0_5

m 0.045 0.343

2.389 BGN B 1_5 1_6 15.41

FILE 83 RUN 71 STARTED 02:29.9 30/01/05 % METHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02

RT

AFEA

HEIGHT BC AREA PERCENT

HEIGHT PERCENT

15.41

100639

7.9732 U

100.0000

100.0000

1 PEHK > APEA PEJECT 1 PEAK > HEIGHT REJECT

100639 TOTHL AREH 7.9732 TOTHL HEIGHT

6.14 6.66 U_6 3.47

9.33 11.91 13.63 18.69

FILE 23 RUN 80 STARTED 13:14.1 30/01/05 % METHOD 1 HIGH BOILERS LAST EDITED 14:36.1 80/01/02

- · · · <del>-</del> -				
RT	AREA	HEIGHT BC	AREA PERCENT	HEIGHT PERCENT
2.549	3612	0.5771	0.1741	0.4596
5.14	77535	5.4558 V	3,7372	4.3452
6.66	96035	10.3447	4,6289	8.2389
3.47	161355	6.1335	7.8019	4.8849
9.88	273167	12.1535 0	13.1667	9.6795
11.91	250431	21.7753 0	10.0709	17.3427
<b>&gt;</b> 13.63	716509	49.0451 U	34.5374	39.0614
15.52	303204	13.1332	14.2143	10.4645
18.69	192287	6.9347	9,2683	5.5231

9 PEARS > APEA REJECT 9 PEARS > HEIGHT PEJECT

2074675 TOTAL HEEH 125.5590 TOTAL HEIGHT 1333 1331

96

Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/30/87 Project No. JCO-104H

93

#### Q.C. DATA REPORT

Analyst: G. Brock

Date of Analysis: 9/15/87

Method of Analysis: Common Solvents

Acetone

< 1.0

Detection Limit: 1.0

Units: ppb

7092427

Sample Number	Analyte	<u>Original Res</u>	Dipisor	te Kesuit &	Deviation
7092427	Acetone	< 1.0	<	1.0	0
Sample Number	Analyte	Sample Contribution	Spike Added	Spike Result	<pre>% Recovery</pre>

30

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton
Laboratory Director

```
1.50
 В
 3.50
3.98
 В
 - END
RUN
 12
 22:06 87/09/15
METHOD 5
 MODIFIED
 CALCULATION: %
 RT
 AREA
 BC
 AREA %
```

39.3711

39.9573 20.6714

22:06 87/09/15

MODIFIED

- BGH

1.50

3.50

3.98

3 PEAKS

0.0461

0.0468

0.0242

> AREA/HT REJECT

5

10

Brown.

10ppm. GARADARD. 21:07 | 87/09/15 D 5 MODIFIED 10 ⊢ BGN HeoH 1.51 EMANOR 2.75 ACETONE 3.99 150PROPYL ANCOHOL 4.42 4.89 8.90 F EHD

RUN 87/09/15 21:07

METHOD S	5 MODIF	IED	CALCULATION:	×
RT	AREA	BC	AREA %	
1.51 2.75 3.99 4.42 4.89 8.90	44.9355 2.0165 22.1813 1.3034 4.7669 0.0177	T T	59.7375 2.6808 29.4880 1.7328 6.3372 0.0235	
6 PEAKS	> AREAZI	HT REJEC	CT CT	

Icc + 7082427

22:24 87/09/15

MODIFIED

0 BGN

1.51

8 4.14

8 7.59

:UN 13 22:24 87/09/15

● HETHOD 5 MODIFIED CALCULATION: %

RT AREA BC AREA %

 1.51
 0.1016
 37.7337

 4.14
 0.0604
 22.4421

 7.59
 0.1072
 39.8241

3 PEAKS > AREA/HT REJECT

#### :UN DEVIATIONS

END

TME ZONE CHANGE TYPE

77 RAMP RATE 1 4.0 TO 8.0 DEG C/MIN KB

```
END
 RUN
 22:25
 87/09/15
 CALCULATION: %
 MODIFIED
 METHOD 5
 RT
 AREA
 BC
 AREA %
 23.9502
 0.60
 0.0144
 43,2028
 0.0260
 0.83
 32.8469
 0.0198
 7.06
 > AREA/HT REJECT
 3 PEAKS
 Icc # 7082428 (1025).
 87/09/15
RUN
 22:37
METHOD 5
 MODIFIED
 16 C 10
 r BGN
 0.57
 1.64
 2.21
u' 6
 3,22
 3.74
 4.44
 5.66
 6.47
 3.82
 EHD
 RUN
 22:37
 87/09/15
 METHOD 5
 MODIFIED
 CALCULATION: %
 RT
 AREA
 BC
 AREA %
 0.57
 1.3853
 47.3978
 1.64
 0.0115
 0.2927
 2.21
 0.0445
 1.1311
 ,29.9586
 1.1792
 1.5677
 4.44
 0.0438
 1.1136
```

12.0522

0.7476

-5.2381-

5.66

€.47

9 PEAKS

0.4744

0.0294

-0.2061 · · · ∪

> AREA/HT REJECT

7.06

4 PEAKS > AREA/HT REJECT

0.0504

49.5733

/cc # 7082429. (10M2).

RUN----3 - 21:50 87/09/15

METHOD 5 MODIFIED

2.03

H 16 C 10 BGN
9:89
11 5 B 3.36

B 6.51

' L END

RUN 3 21:50 87/09/15

METHOD 5 MODIFIED CALCULATION: %

RT AREA BC AREA %

 RI
 AREA
 BC
 AREA
 2

 0.61
 0.0105
 T
 12.8154

 0.89
 0.0285
 34.5590

 3.36
 0.0206
 25.0114

 6.51
 0.0228
 27.6139

4 PEAKS > AREA/HT REJECT

END

RUN 3 21:50 87/09/15

METHOD 5	MODIF	IED	CALCULATION:	/
RT	AREA	вc	AREA %	
0.61 0.89 3.36 6.51	0.0105 0.0285 0.0206 0.0208	T	12.8154 34.5590 25.0114 97.6139	-

4 PEAKS > AREA/HT REJECT

↓ 4 · 22±02···07/09/15·

7082430 (10mls).

THOD 5 MODIFIED

16 C 10 BGN
8.563
8
4.47
5
5.69
6.52
7
8.85

RUN 4 22:02 87/09/15

METHOD 5	MODIF	IED	CALCULATION:	×
RT	AREA	BC	AREA %	
0.56 0.83 4.47 5.69 6.52 8.85	0.0186 0.0752 0.0400 0.2642 0.0137 0.0424	T U U U	4.1097 16.5633 3.8096 58.1507 3.0232 9.3433	

6 PEAKS > AREA/HT REJECT

```
4 PEAKS
 > AREA/HT REJECT
```

## RUN DEVIATIONS

CHANGE TYPE TIME ZONE 10.20 OUEN TEMP

Lu # 7082431. 23:29 87/09/15

0 5 MODIFIED

- BGN 10

3.15

4.68

7.24

BENB.35

RUN 13 23:29 87/09/15

METHOD 5 MODIFIED CALCULATION: % RT 角限田角。 ECAREA % 0.53 0.02004.3512 0.38 0.0274 5.9684 2.8439 3.15 0.0131 4.68 0.0257 5.5821 7.24 0.2555 55,4683 9.35 0.1187 25.7857

6 PEAKS > AREA/HT REJECT

```
7.12
 8.82
 EHD
 RUN
 87/09/15
 22:14
 CALCULATION: %
 METHOD 5 MODIFIED
 AREA %
 RT
 AREA
 EC
 10.6411
 0.56
 0.0143
 9.1075
 0.0127
 0.84
 0.0254
 18.2375
 5.69
 7.12
 0.0309
 22,1318
 3.82
 39.8819
 0.0557
 > AREA/HT REJECT
 5 PEAKS
 La # 7082432.
RUN
 22:25
 87/09/15
METHOD 5
 MODIFIED
 16 0 10
 - BGN
 8.69
 7.06
 LEND
```

5.69

RUN 22:25 87/09/15 ıΞ METHOD 5 CALCULATION: % MODIFIED RTAREA EC, AREA % 0.600.0144 23.9502 43.2028 0.83 0.02607.06 32.8469 0.0198 3 PEAKS > AREA/HT REJECT

```
RUN
 22:02
 87/09/15
 MODIFIED
 CALCULATION: %
 METHOD 5
 \mathbf{EC}
 AREA %
 RT
 AREA
 0.56
 0.0186
 Τ
 4.1097
 0.0752
 16.5633
 0.83
 3.8096
 4.47
 0.9400
 0.2642
 U
 58.1507
 5.69
 6.52
 0.0137
 Ų
 3.0232
 8.85
 0.0424
 Ų
 9.3433
 6 PEAKS
 > AREA/HT REJECT
 he # 7082433 (10m/s)
RUN
 5
 22:14
 87/09/15
METHOD 5
 MODIFIED
 16 C 10
 - BGN
 8:56
11 6
 5.69
 7.12
 Е
N 7
 8.82
 END
 RUN
 5
 22:14
 87/09/15
```

CALCULATION: %

AREA %

10.6411

9.1075

18.2375

22.1318

39.8819

6.52

8.85

EHD

METHOD 5

0.56

0.84

5.69

7.12

3.82

5 PEAKS

RT

MODIFIED

> AREA/HT REJECT

 $\mathbf{EC}$ 

AREA

0.0143

0.0127

0.0254

0.0309

0.0557

W 7

#### RUN DEVIATIONS

TIME ZONE CHANGE TYPE

6.42 OVEN TEMP 2 150 TO 122 DEG C KB

23:16 87/09/15

La # 7082434 (WHI).

## 5 MODIFIED

• 10 BGN

• 0.55

• 3.92

• 8.03

RUN 12 23:16 87/09/15

• 4ETHOD	5 MODIF	IED	CALCULATION:	*
RT	AREA	вc	AREA %	
0.55 3.92 ● 8.03 8.79	0.0109 0.0040 1.9185 0.1926	V T U	0.5132 0.1899 90.2361 9.0606	

4 PEAKS > AREA/HT REJECT

- END

10.73

BEND

	ы 5	22:54	87/09	/15	,	
	тнор 5	MODIF	IED	CALC	CULATION:	%
	Γ	AREA	BC	AREA	×	
•	3.71 1.04 2.34 3.56 3.73	0.0192 0.0252 0.1019 0.4596 0.0471	T T U	2.9537 3.8704 15.6071 70.3486 7.2200		
	S DEAVE	N OPEO/H	T DETECT			

0:05 87/09/16 1cc 4 7082427 +39pspihe. MODIFIED 19 r BGH 1.17 6.24 7.12 9.18 12,25 0:05 87/09/16 RUN

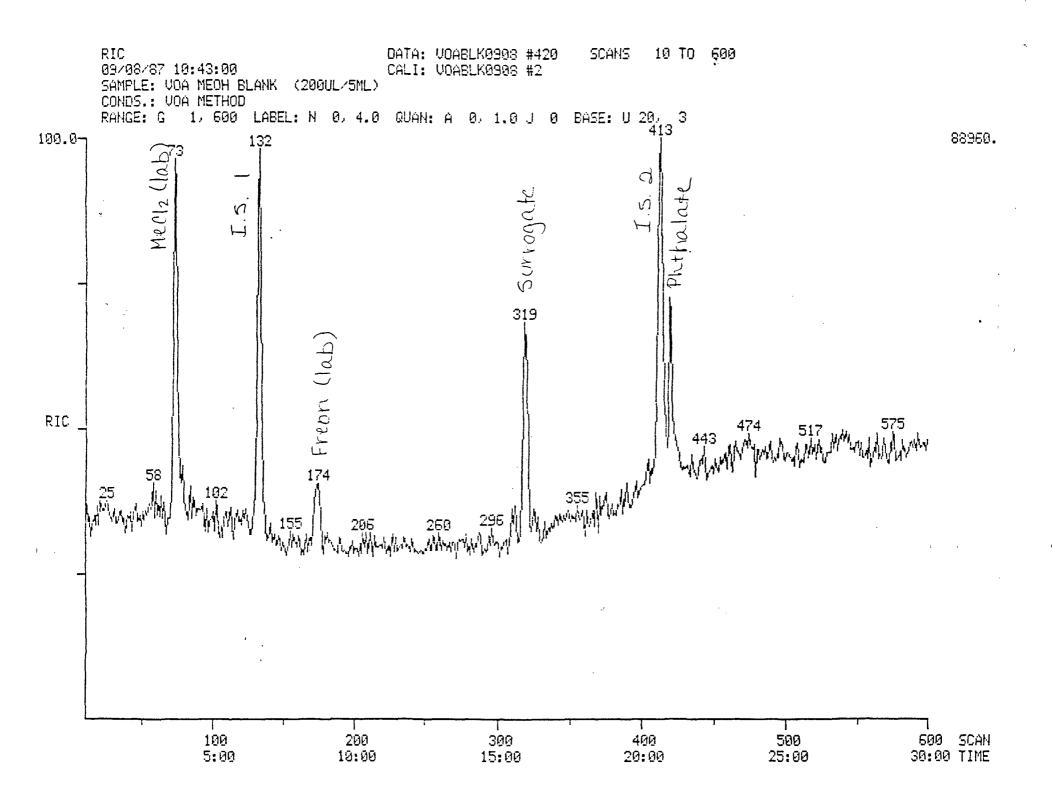
ı	1.5 (2.7)			<del></del>	
	METHOD 5	MODIF	IED	CALCULATION:	*
	RT	AREA	BC	AREA %	
	0.59	0.0231	T	0.0273	
ı	0.89	0.0738	T	0.0873	
	1.17	20.9826	Ü	24.8204	
	3.46	62.7504		74.2276	
	6.24	0.1759	Ü	0.2031	
	7.12	0.0061		0.0072	
	8.18	0.2586		0.3059	
1	12.26	0.2669		0.3157	
	_		<del>_</del>		
	O PEAKS	- ) üRFü/k	IT BETELT		

Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 08/28/87 Date Received: 08/31/87 Date Reported: 09/30/87 Project No. JCO-104H

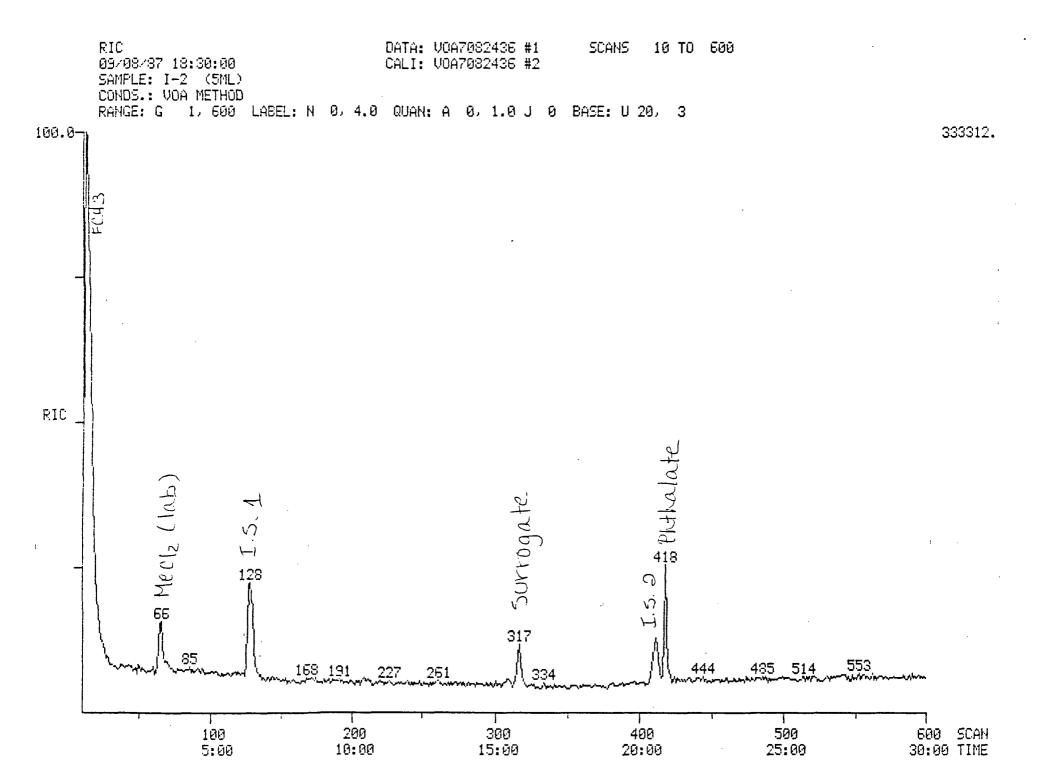
### Q.C. DATA REPORT

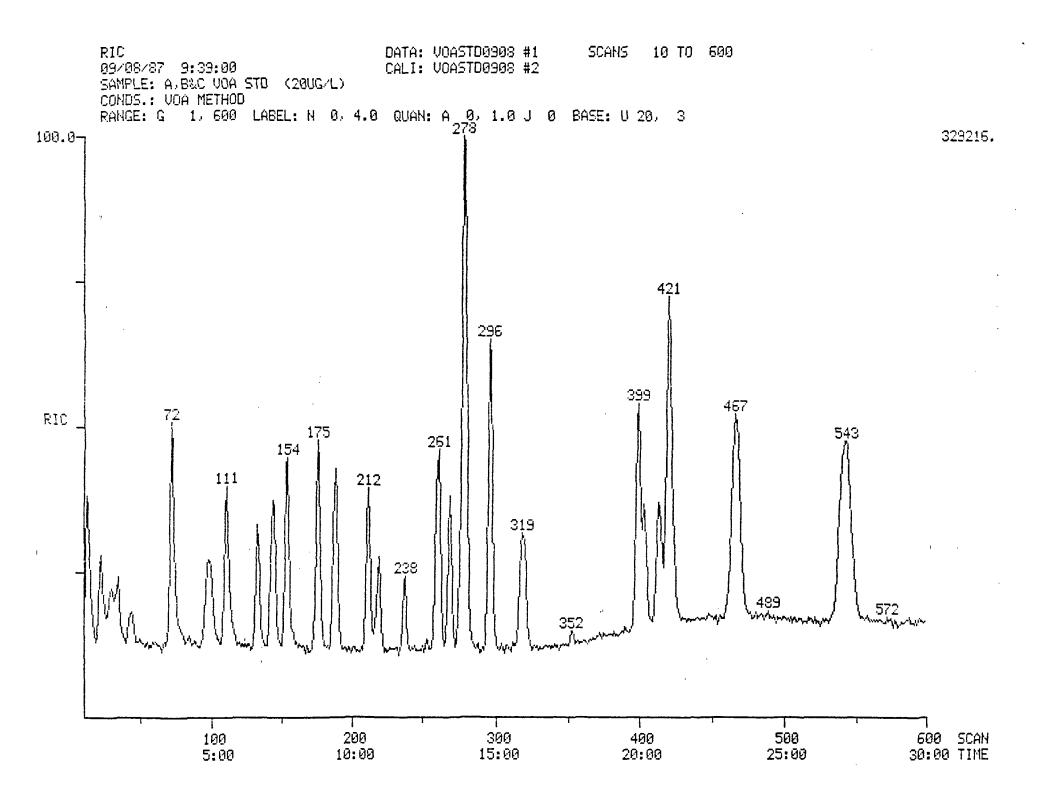
Analyst: W. Amundsen

Date of Analysis: 9/9/87 Method of Analysis: EPA 624


Detection Limit: 0.5

Units: ppb


Sample Number	Analyte	Original Res	sult <u>Duplic</u>	ate Result	Deviation
7091017	Cl ₄	7.4		7.8	2.6
Sample Number	<u>Analyte</u>	Sample Contribution	Spike Added	Spike Result	% Recovery
7082435	I.S. 1	< 0.5	20	22	110


SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director



RIC DATA: V0A7082435 #211 CALI: V0A7082435 #2 10 TO 500 SCAMS 09/08/87 16:09:00 SAMPLE: I-2 (5ML) CONDS.: VOA METHOD RANGE: G 1, 500 LABEL: N 0, 1.0 J 0 0, 4.0 QUAN: A 100.07 197888. B MECIZ (1ab) RIC 110 319 211 1 100 200 300 500 400 500 SCAN 30:00 TIME 5:00 10:00 20:00 25:00 15:00







Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

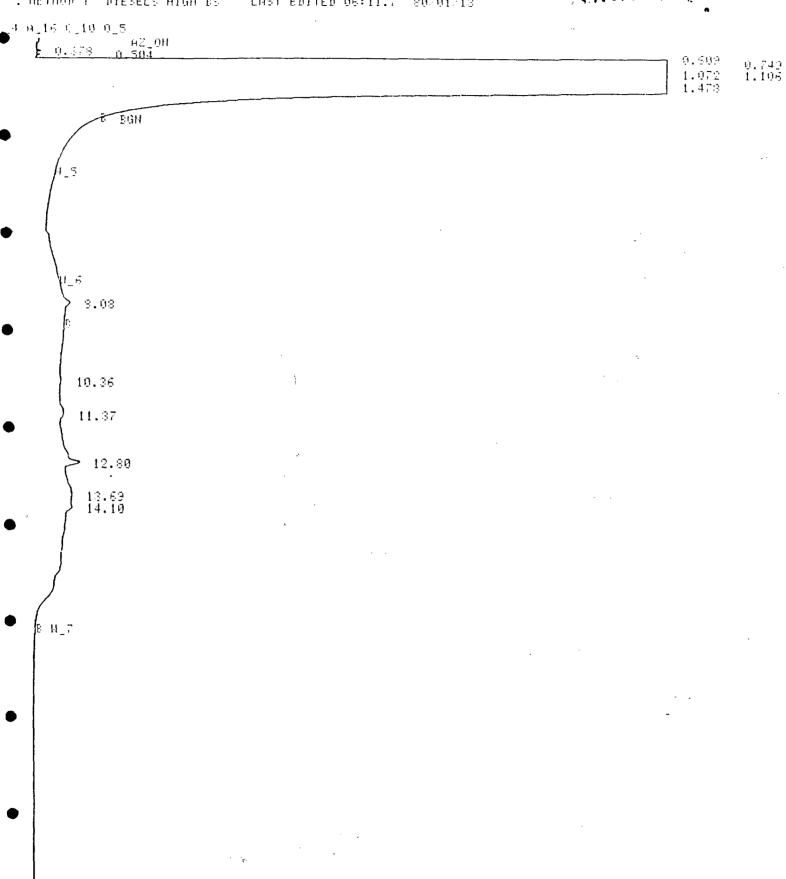
### Q.C. DATA REPORT

Analyst: G. Brock

Date of Analysis: 10/12/87

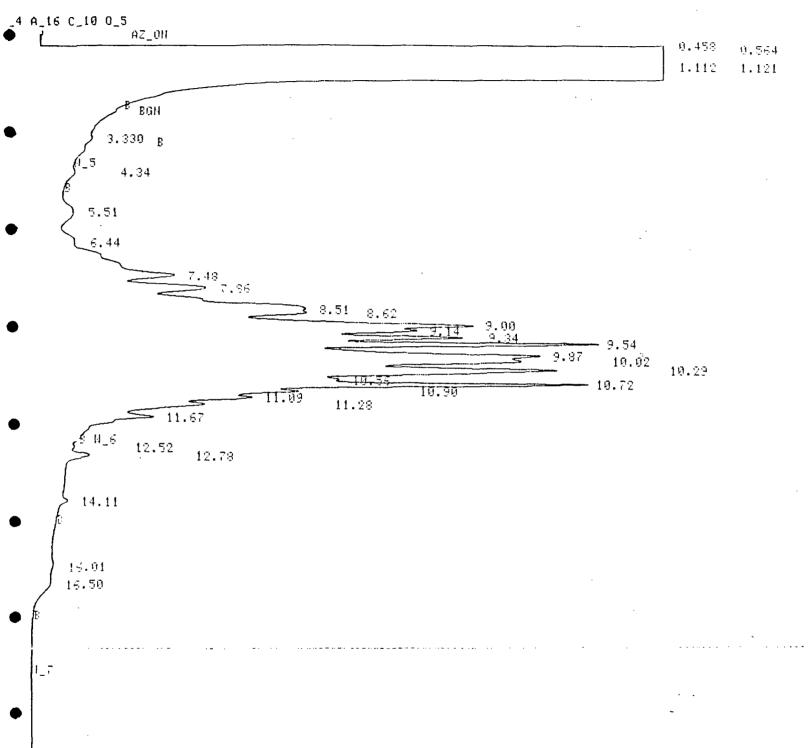
Method of Analysis: EPA 3510/8015

Detection Limit: 1.0


Units: ppm

Sample Number	Analyte	Original Result	<u>Duplicate Result</u>	<pre>% Deviation</pre>
7092021	P. Thinner	< 1.0	< 1.0	0

Sample Number	Analyte	Sample Contribution	Spike Added	Spike Result	% Recovery
7092021	P. Thinner	< 1.0	200	210	105


SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director TILE 197 PUBLIS STAPTED 08:17.2 87.10 09 1: METHOD 1 DIESELS HIGH DS LAST EDITED 06:11.7 80/01/13 BIMMIC



Paint-Hunner Stv.

FILE 157 RUN 7 TT STARTED 08:52.7 87/10/09 % METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13



FILE 158 RUN 8 STARTED 09:21.5 87/10/09 % METHOD 1. DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13

7012015

N_4 H_16 C_10 O_5 H2_OH E_0.378 _0.505 0.610 $\frac{0.753}{1.106}$ 1.072 1.486 N_5 _6 3.14 11.20 12.80 13.79 14.12  $W_{\perp}7$ 16.03 16.55

RUN 8 STARTED 09:21.5 87/10 09 FILE 179 METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80 01/13

HEIGHT BC AREA REPORTE HEIGHT FERCENT HPEA FT

7092016

PUN 10 STARTED 10:20.9 87/10/09 FILE 160 " METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13

1_4 H_16 C_10 O_5 AZ_OH 0.6400.643 1.119 1.120 1.521 BGN 8.12 8.95 9.33 11.30 12.30 14.11 B W_7 15.97 16.51

FILE 190 - RUH 10 - STARTED 10:20.9 87/10/09 % METHOD 1 % DIESELS HIGH BS | LAST EDITED 06:11.7 | 80:01/13

LAST EDITED 06:11.7 80/01/13 N_4 H_16 C_10 O_5 _0.372____AZ_0H 9.506 0.610 1.077 1.216 2.406 BGN 1_6 8.12 11.31 12.79 14.12 15.99 16.51

# 7092018

```
4 A_16 C_10 D_5
 AZ_ON
0.517
 0.628
 0.685
 1.104
 1.113
 7.96
 8.11
 11.21
 12.79
 14.10
 H_{-}7
 15.96
 16.49
```

FILE 164 RUN 14 STARTED 12:53.7 87/10/09 % METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13

N_4 H_16 C_10 O_5 H0_SA 0.510 0.62 1.120 1.33 legn. 1_5 11_6 10.08 11.23 12.63 14.97 14.70  $M_{\perp}7$ 15.91 16.43

# 11/2020

FILE 165 FUN 15 STARTED 13:46.3 87/10/09 % METHOD 1 DIESELS HIGH 86 LAST EDITED 96:11.7 80/01/13

N_4 A_15 C_10 O_5

HQ_SA B.376 0.609 0.8211.082 1.092 1.954 2.148 1_5 11 6 3.19 11.34 12.80 14.11 14.76 15.98 16.50

FILE 165 ROW 15 STARTED 13:46.3 87/10/09 % METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13

F [,] T	AREA	HEIGHT BC	AREA PERCENT	HEIGHT PERCENT
8.10 •11.34 12.80 14.11 14.76	2807 20426 41139 15048 1507	0.1423 U 0.9075 U 4.5450 U 1.4894 U 0,1264	3.0973 22.5385 45.3937 16.6043 1.6629	1.6924 10.7910 54.0442 17.7105 1.5034
15.98 16.50	9700	0.6239 U 0.5762	10.7032	7.4055 6.8521

e REALS ) - AREA REJECT 7 (CAUS ) - HEIGHT REJECT 90627 TOTAL AREA 8.4098 TOTAL HEIGHT

7092021

0.652

1.156

1.588

0.705

1.164

FILE 166 RUN 16 STARTED 14:08.8 87/10/09 % METHOD 1 DIESELS HIGH BS LAST EDITED 06:11 LAST EDITED 06:11.7 80/01/13

N_4 A_16 C_10 O_5 AZ_ON 0.378

B EGH 1_5 3.12

11.31 12.81

14.12---3 N_7

15.98 16.49

7092022

FILE 167 RUN 17 STARTED 14:37.9 87/10/09 % METHOD 1 DIESELS HIGH BS | LAST EDITED 06:11.7 80/01/13

7.03 U_5 2.10 11.19 12.79 14.10 U_7 15.96 16.47

FILE 167 RUN 17 STARTED 14:37.9 87/10/09 ●0 METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13

ET	AREA	HEIGHT BC	AREA PERCENT	HEIGHT PERCENT
7.09 8.10 11.19 02.79 14.10 15.95 16.47	1041 22942 19873 41483 13809 12945	0.1173 V 1.7828 0.8753 4.6765 V 1.5138 0.8392 V 0.6948	0.9287 20.4560 17.7282 37.0105 12.3187 11.5480	1.1167 16.9795 8.3369 44.5390 14.4175 7.9929 6.6174

6 PEARS > APEA REJECT 112098 TOTAL APEA 7 PEARS > HEIGHT REJECT 10.4997 TOTAL HEIGHT

はいといいか

0.381 0.487 n.585 p

0.672

1.156 1.165

1.565

(1-5-4.39 p

§ .14 11.35

12.81

14.75 8 M_7 15.95 16.49

■LE 168 RUN 18 STARTED 14:58.1 87/10/09 : METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13

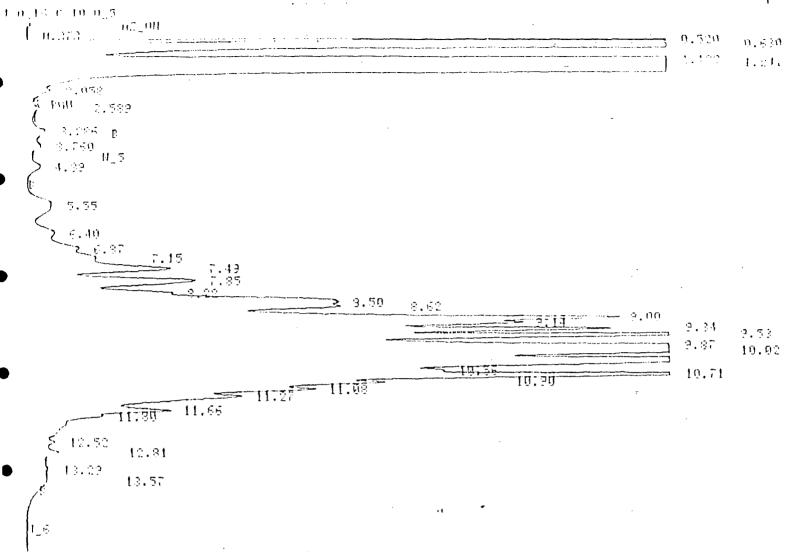
₽Ţ	AREA	HEIGHT BC	AREA PERCENT	HEIGHT PERCENT
1.39	1391	0.1338	1.6442	1.6852
14	1143	9.1113 V	1.3505	1.4021
<b>9</b> 14	28131	1.7566	33.2514	22.1253
.35	13315	<b>9.</b> 8997	15.7382	11.3326
:. 81	24316	3.0049 !!	28.7419	37.8486
. 1 1	8426	0.9143 V	9.9599	11.5161
.75	534	0.0799	0.6307	1.0062
,95	7346	0.4942 V	<b>8.</b> 6833	6.2253
49		0.5445		6.8586

8 PENDS > AREA REJECT 84600 TOTAL AREA 9 PENDS > HEIGHT REJECT 7.9393 TOTAL HEIGHT

* 709202H FILE 169 PUN 19 STARTED 15:18.3 87/10/09 . METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13  $M_{\perp}4$  8,16 0_10 0_5 AZ_OH 0.372 0.516 9.6429.693 1.145 1.154 1.578 1_6 7.10 8.13 11.34 12.81 14.12 15.96 16.47

FILE 199 RUN 19 STARTED 15:18.3 37/10/09 % METHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13

PT APEA HEIGHT BC APEN PERCENT HEIGHT PERCENT ~


7.10 1718 0.1010 0 1 7000 0 1050

4 0.18 0.10 0.5 HZ_OH 1.196 1.116 1.526 toll B 7.12 8.13 3.67 11.16 12.79 14.12 15.97 16.51 4----19.02

■5 153 RUN 9 STARTED 09:52.2 87/10/09 HRTHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 180 01 13

PT OPEN HEIGHT DO OPEN PERCENT DETOUT DEBOCENT

| TIME 133 | ROH 5 | STARTED 23:31.7 | 87-10/08 |••• MRTHOD 1 | DIESELS HIGH BS | | LAST EDITED 06:11.7 | 80/01/13 # 709/2021 -1- gibe



THE 195 PURES STAPTED 23:31.7 87-10/08
HETHOD 1 DIESELS HIGH BS LAST EDITED 06:11.7 80/01/13

FT	aPEA	HEIGHT BC	AREA PERCENT	HEIGHT PERCENT	
<b>0</b> 599	17479	1.6125	<b>0.</b> 3989	0.2745	
236	12914	1.5925	0.2947	9.2711	·
7.0	5473	0.7528 V	0.1249	0. <b>1</b> 282	
. 32	34303	2.4022	g.7929	9.4099	
. 55 55	146593	4.9239 #	3.3440	0.8212	
419	27397	2.1151 U	9.6232	0.3691	# ·
- 1 T			0,3806		
15	15199	1.7880 U	9.3468	0.3044	
.49	233681	20.1956 0	5.3328	3.4391	
9.5	311358	25.2079 U	7.1055	4.2914	
	19594	2.9139 #	0.4472	0.4961	
22 50	147719	8.2737 U	3.3711	1.4035	
52	48924	8.4372 1	1.1142	1.4364	
	319491	43.8212 #	7,2911	7.4602	
$lackbox{1.4}{1.4}$	ริงัฐอัติ	12.3351 #	1.2910	2.0999	
2.1	274800	47.2464 U	6.2712	8.9433	
34 53 97	614071	104.9910 !!	-14.013€	17.8738	
47	141399	29.1128 0	3.2269	4.9562	
tie!	159498	22.9763 H	3.6399	3.9115	
00 29	779347	76.1132 U	17.7854	12.9595	
<b>~</b> 5	6635	1.6559 !!	0.1514	0.2819	
<b>●</b> 5	646600	109.2858 "	14.7590	18.5020 -	
90	51685	11.9757 9	1.1795	2.0322	
11.3	ล์งค์กร	(၁) ဂိုင်းကို ()	1 ១៣១	ಹ ಸರ್ವಾದಿ	



Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 09/25/87
Date Received: 09/28/87
Date Reported: 10/13/87
Project No. JCO-104H

## Q.C. DATA REPORT

Analyst: K. Keeley

Date of Analysis: 10/09/87

Method of Analysis: EPA 601/602

Detection Limit: 0.5

Units: ppb

Sample Number	<u>Analyte</u>	Original Result	Duplicate Result	<pre>% Deviation</pre>
7092018	ll DCA	310	300	1.6
	111 TCA	30	31	1.6

			Sample			
Sampl	e Number	<u>Analyte</u>	Contribution	Spike Added	Spike Result	% Recovery
709	2015	Benzene	< 0.5	5.0	4.8	96

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

```
こまれのものはあるかって
 4,21
ر_'
 5.11
\mathbf{C}
\circ
 10.48
 14.90
 16. 34
 13. €0
 21.00
 22.06
 HALL
 10/09/87 20:07:35
 CH= "A"
 FILE 1.
 METHOD 5.
 RUN 304
 INDEX
 ANALYST: KWK
 HAME
 PPB
 RT
 AREA BC
 RF
 1.27
 ø.
 1608739 02
 93
 2
3
 1938421 02
 1.88
 2.17
 6015002 02
 2. 75
 7580212 02
 A.
 3.58
 233239 02
 4.21 64036629 08
 5.57
 0.
 6429528 06
 .
8
9
 6.11
 7453082 06
 7.21 10516144 06
8.33 17926460 07
 0.
 11
12
 0.
 10.48 11763663 08
 12.29
 Ø.
 9080170 06
 0.
 13.12 11853032 06
 17601566 06
 0.
 13.8
15
 ø.
 14.9
 4006874 06
 16
 68987 07
 16.34
 17
 0.
 18.6 13786490 01
 4663052 08
1777 05
 18
 A.
 21.
 19
 22.06
 0.
 TOTALS
 8.
 196563067
ا
ت
 INPUT OVERRANGE AT RT= 5.68
\Box
L__
 PID
 CH= "B" PS= 1.
 10/09/87 20:07:35
 METHOD 5. RUN 297
 INDEX
 ANALYST: KWK
 NAME
 PPB
 RT
 AREA BC
 RF
 9.24
 324388 01
 0.
 12.98
 89668 01
 14.78
 24406 01
 0.
 81888 01
 0.
 18.43
 5
 20.88
 184374 01
 9.
 TOTALS
 794724
```

၁ ၁

ر ر

į

## <del>~</del>

INPUT OVERRANGE AT RT= 5.62

PID 10/09/87 09:01:26 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 317 INDEX 1

ANALYST: KNK

NAME	PPB	RT	AREA	BC	RF
1	<u> </u>	6.94	155173		
2	<u>9</u> .	7.68	165472		
3	0.	9.2	1012900		
4	9.	9.8	650734	03	
5	0.	12.44	40581	91	
6	0.	13.45	223205	91	
7	9.	19.39	100032	02	
8	0.	19.74	225272	03	
9	9.	21.55	388192	92	
19	0.	22.59	156264	03	
TOTALS	0.		3117825		

HALL 10/09/87 09:01:26 CH= "A" FS= 1.

FILE 1. METHOD 5. RUN 324 INDEX 1

ANALYST: KWK

HAME	PPB	RT	AREA	вс	RF
1	0.	3.73	351201	92	
2	9.	4.98	11161982	08	
3	0.	5.17	157489	96	
4	0.	5.3	457866	97	
5	9.	6.6	700	95	
1 2 3 4 5 6 7	0.	7.81		02	
7	0.	8.56		02	
8 9	0.	9.01	11241486	92	
9	9.	10.11	10844735		
10	0.	10.99		92	
11	<b>0.</b> .	11.39	159517	02	
12	0.	12.57	9554562	92	
13	9.	13.87	4605732		
14	9.	14.64	210065		
15	9.	14.33		03	
16	0.	16.47		92	
17	0.	16.91	64495	92	
19	9.	17.	170717	03	
19	9.	18.57	13285045	92	
29	0.	19.4	2771569	92	
21	9.	19.74	6018426	82	
22	9.	20.49	983133	92	
23	g.	21.61	31950449	92	
24	9.	23.36	196649	93	

5 ppb Aromedic Mix 10 ppb MEK CHANNEL B INJECT 10/09/87 08:09:09 6.65  $\overline{1}$ 3.47 14.62 29.86 22.62 26.80 INPUT OVERRANGE AT RT= 5.6 CH= "B" PID PS= 10/09/87 08:09:09 FILE 1. METHOD 5. **RUN 316** INDEX 1 ANALYST: KWK NAME PPB RT AREA BC RF 6.65 402463 01 ø. 9.2 2162369 02 9. 9 13. 47 2254006 03 Я. 415576 01 0. 5 14.62 57208 01 67 18.03 19.74 69067 02 ø. 460365 02 8 29.86 381440 03 22.62 26.06 339108 01 422809 02 0. 19 0. 1009267 03 11 0. 26.8 TOTALS 7973678 HALL 10/09/87 08:09:09 CH= "A" PS= FILE 1. METHOD 5. **RUN 323** INDEX ANALYST: KNK NAME PPB RT AREA BC RF 1 2 3 4.16119356469 08 6.24 187079 06 0. 6.48 1026596 97 8.99 25690057 05 Ø. 5 13.12 211433 05 0. 6 7 ø. 13.6 48469 91 .20.98 9469857 01 TOTALS 0. 155989950 CHANNEL B INJECT 10/09/87 09:01:26

د..>

**د**ے

7.69

9.20

13.44

13.44

19.76

29.86

29.63

INPUT OVERRANGE AT RT= 5.64

PID 10/09/87 09:45:20 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 266 INDEX 1

AHALYST: KWK

HAME		PPB	RT	AREA	BC	RF		
1 2 3 4 5		0. 0. 0. 0.	0.53 7.69 9.2 9.84 13.44	198062 41231 1028270 220416 407396	01 02 03		·	
6 7 8 9 10	Ĭ	9. 9. 9. 9.	19.76 20.86 22.61 29.63 30.67	4873587 483587 419283 361736 380239 658672	01 01 01 02			
TOTALS		ø.		4198892				,

HALL 10/09/87 09:45:20 CH= "A" PS= 1.

FILE 1. METHOD 5. RUN 272 INDEX 1

ANALYST: KWK

NAME	PPB	RT	AREA	BC	RF
1 2 3 4 5 6 7 8 9 10 11 12	 9. 9. 9. 9. 9. 9. 9. 9.	2.21 3.64 4.09 5.4 6.09 7.17 7.8 9.58 10.09 13.08 18.58	338251 229595 24467990 68616 2682222 19458934 5866597 4932491 1606154 1100806 539396 156417	02285 000 000 000 000 000 000	
13	0.	29.98	10525934	01	

S.1. 7092015.

L.C.

.53

7.73

## INPUT OVERRANGE AT RT= 5.64

PID 10/09/87 10:29:02 CH= "B" PS= 1.

FILE 1. METHOD 5. RUN 267 INDEX 1

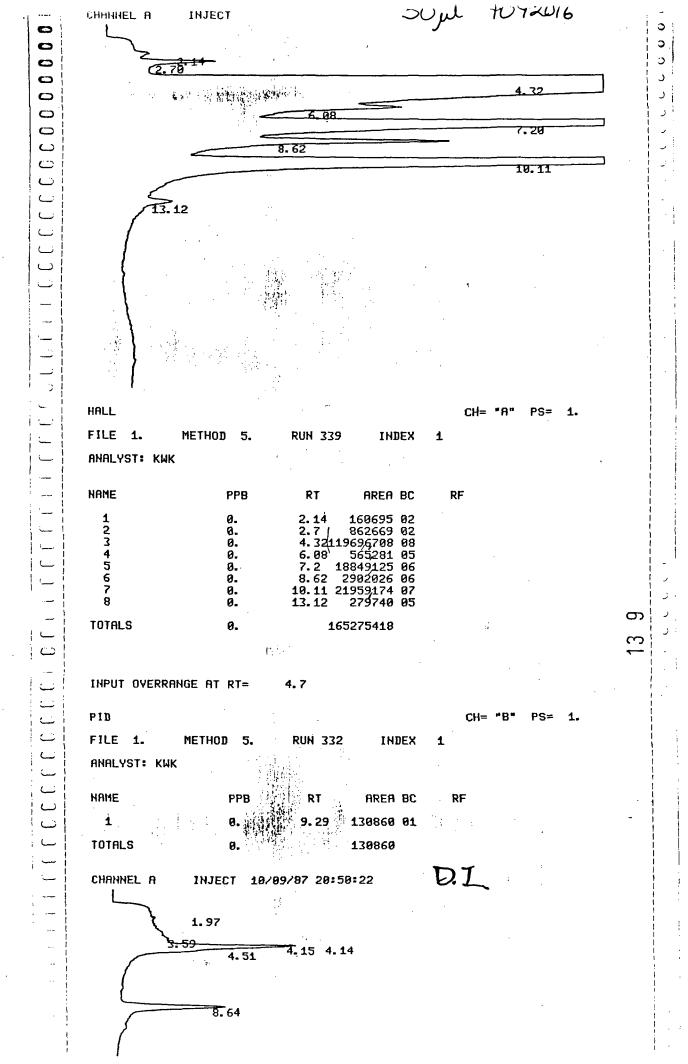
ANALYST: KWK

NAME PPB RT AREA BC RF

1 0. 0.53 9639 01
2 0. 7.73 37785 01
3 0. 9.23 835672 01

TOTALS 0. 883096

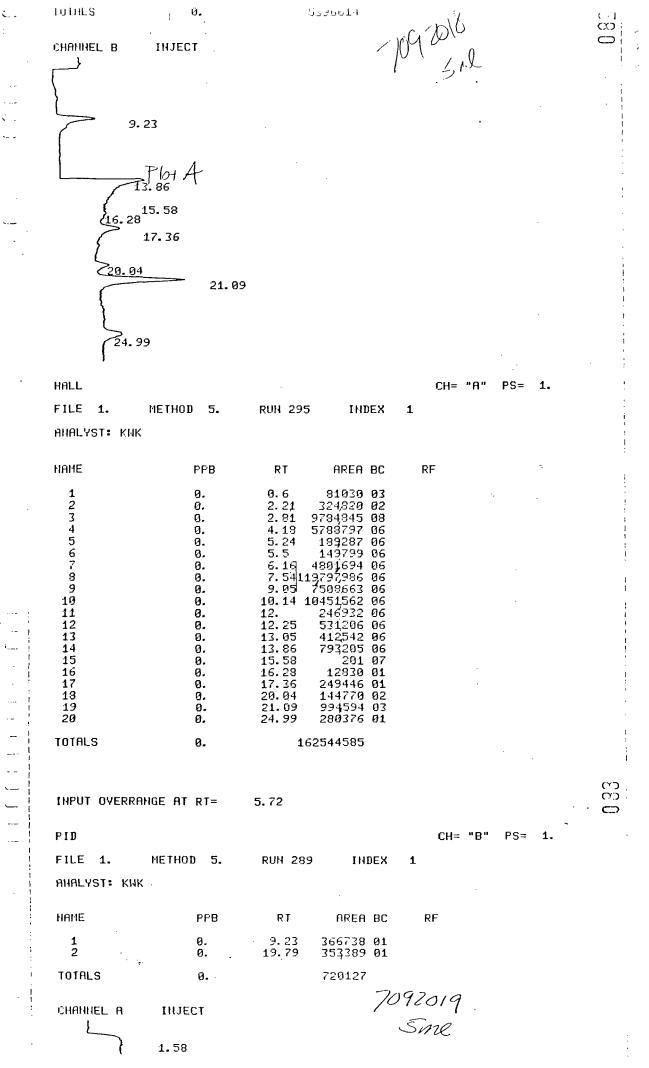
HALL 10/09/87 10:29:02 CH= "A" PS= 1.


FILE 1. METHOD 5. RUN 273 INDEX 1

AHALYST: KWK

наме	PPB	RT	AREA	BC	RF		
1	0.	2.16	83976	02			
2	0.	3.37	197279	02			
3	9.	3.6	212752	92			
4	0.	٧4.12		08			
5	9.	5.3	1346	<u>05</u>			
1 2 3 4 5 6 7	0.	5.49	29285	05			
7	9.	6.1	2063,285	96			
8 9	9.	6.68	72276	96			
9	0.	7.2	14962969	96			
19	0.	7.84	4362981	96			
11	9.	8.25	452819	96			
12	<b>9.</b>	< 8.61	1936380	96			
13	<b>0.</b>	9.09	973177	96			
14	ø.	19.13	827207	97			
15	0.	13.12	432599	01			
16	9.	18.58	76849	91		4	$\wedge$
					$\sim 1$		1700
TOTALS	ø.		43071927		h le	*	10

5mls # 7092016.


PRODUCE B THIERY AD DO ON ALLANDA



```
.52
 7092017
 7.73 PCE
 9.22
 18.30
 24.99
INPUT OVERRANGE AT RT=
 5.74
PID
 10/09/87 12:44:13
 CH= "B"
 PS≈
 ပြာ
FILE 1.
 METHOD 5.
 RUH 270
 INDEX
 \circ
ANALYST: KWK
NAME
 PPB
 RT
 AREA BC
 RF
 1
2
3
 0.52
7.73
 12618 01
 257353 01
742561 01
1917749 02
 0.
 9.22
 13.3
 24.99
 751692 03
TOTALS
 3681973
HALL
 10/09/87 12:44:12
 PS≃
 CH= "A"
FILE 1.
 METHOD 5.
 RUN 276
 INDEX
ANALYST: KWK
NAME
 PPB
 RT
 RF
 AREA BC
 307228 02
 14972 02
7677 03
 1.58
 1.68
 1.96
 14016 02
 2. 19
2. 82
2. 91
3. 44
 1374,565 02
 343029 02
 384899 02
846001 02
 3.56| 279263 02
4.42118639577 08
6.11 2677258 06
7.21 25551653 06
 19
11
 12
 13
 27379757 06
536672 06
 7.85
 14
15
 9.08
9.6
 22214 06
3627342 06
54191 06
 16
17
 0.
0.
0.
0.
0.
0.
 10.1
 11.54
11.73
 13
 7024 07
 19
 364 05
1090 05
 20
21
22
 725127 06
64307 07
 13.14
 13.88
 23
 18.56
 129042 01
 Emls * 7092018.
TOTALS
 182987163
 INJECT 10/09/87 13:24:19
```

د.،

(_)



```
1072019
 1.58
 3. 463<u>. 68</u>
 4.17
 5. 97 6. 12
 7.24
 3.64
 10.13
 PlotB
INPUT DVERRANGE AT RT=
 5.71
PID
 CH= "B"
 PS=
FILE 1.
 METHOD 5.
 RUN 290
 INDEX
 1
ANALYST: KWK
HAME
 PPB
 RT
 AREA BC
 RF
 0.52
 11944 01
 ø.
 9.24
 305585 01
TOTALS
 ø.
 317529
HALL
 CH= "A"
FILE 1.
 METHOD 5.
 RUN 296
 INDEX
ANALYST: KNK
NAME
 PPB
 RT
 AREA BC
 RF
 1.58
2.86
3.46
3.68
4.17
5.97
 610972 01
88427 02
 Ø.
 2
3
4
5
 57663 82
 164796 02
11776659 08
25011 06
 0.
 0.
 6. 12
7. 24
8. 64
 39876 07
 ø.
 .
8
9
 1753,501 02
 0.
 5446782 08
 10
 0.
 10.13
 938930 05
 11
 18.62
 278278 01
 0.
TOTALS
 21180895
 0.
DATE"10/9/87
TIME"15:52:00
15:52:02
HALL
 CH= "A"
```

ف ھ

C

**C.** 2

نے

CHANNEL B INJECT 10/09/87 15:54:06 4.16 **6.14** 7, 21 7.86 8.61 19.13 00 UJ 11.80 $\Box$ HALL CH= "A" PS= 1. 10/09/87 15:54:06 FILE 1. METHOD 5. **RUN 298** INDEX 1 ANALYST: KWK HAME PPB RT AREA BC RF 1 2 3 3.26 115454 02 3.6 Ø. 146733 02 4.16 12623708 08 456789 1106722 06 1715453 06 0. 6.14 7. 21 7. 86 ø. 0. 286080 06 8.61 5582092 06 10.13 15464,954 06 0. 24663 07 9. 11.8 TOTALS 0. 37065859 INPUT OVERRANGE AT RT= 5.73 PID 10/09/87 15:54:06 CH= "B" PS= FILE 1. METHOD 5. **RUN 291** INDEX 1 AHALYST: KWK HAHE PPB RT AREA BC RF 1 0. 226379 01

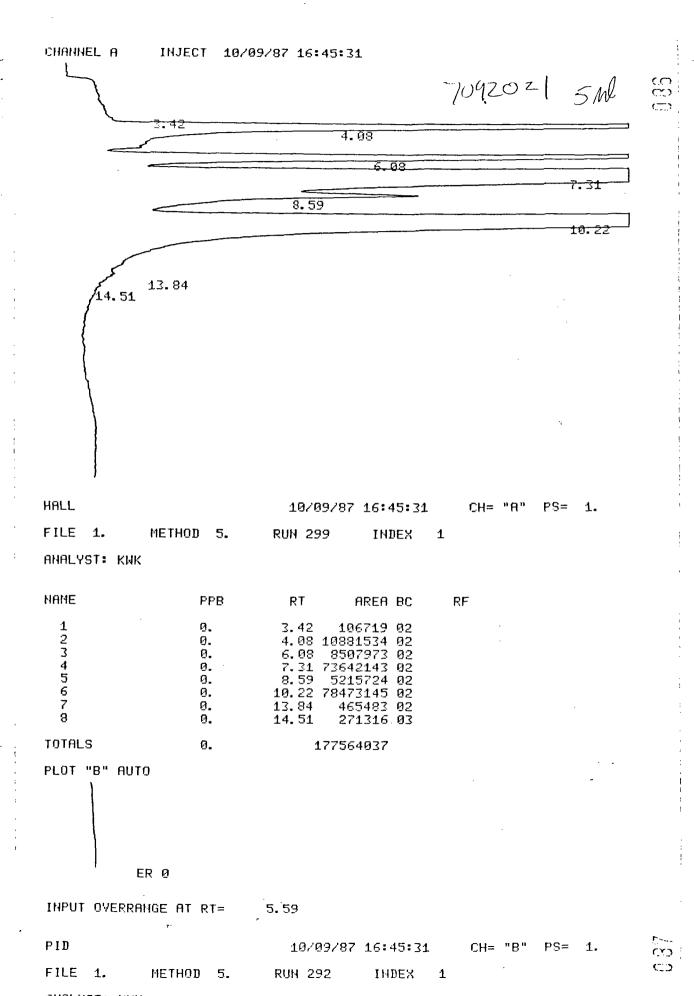
0.53

9.24

13.46

0. ø.

ø.


228772 01

197588 01

652739

3

TOTALS



ANALYST: KMK

```
1/04/2022
5Ml
CHANNEL B
 INJECT 10/09/87 17:25:41
 .53
 P3.24
 ER 0
INPUT OVERRANGE AT RT=
 5.76
PID
 CH= "B" PS=
 10/09/87 17:25:41
 METHOD 5.
FILE 1.
 RUN 293
 INDEX
 1
ANALYST: KWK
HAME
 PPB
 RT
 AREA BC
 RF
 0.
 0.53
 224524 01
 9.24
 364721 01
TOTALS
 0.
 589245
HALL
 CH= "A"
 PS=
 10/09/87 17:25:41
FILE 1.
 METHOD 5.
 RUN 300
 IHDEX
 1
ANALYST: KWK
NAME
 PPB
 AREA BC
 RF
 RT
 1
2
 32209 02
 ø.
 3.66
 Ø.
 4.16
 7450141 03
 3
 9949 06
 5.11
 9.
 5.22
 509 07
 g.
 5
 ø.
 5.54
 203775 01
 0.
 6
7
 491584 01
 6.12
```

7.24 10560293 02

1225958 02

1186116 02

6922285 01

84600 03

16633 91

3.35

8.63

9.13

10.13

13.07

ø.

IJ.

Ø.

0.

Ø.

3

9

19

11

12

 $\frac{G_{s,s}}{G_{s,s}}$ 

```
INJEC: 10/09/87 18:03:21
 7042023 EM
 3.63
 4.16
 19.11
 13.82
 15.82
 Q0. 06
 21.10
 24. 92
 \frac{\omega}{\omega}
HALL
 CH= "A" PS= 1. 1
 10/09/87 18:03:21
FILE
 1.
 METHOD 5.
 RUN 301
 INDEX
 1
AHALYST: KWK
HAME
 PPB
 RT
 AREA BC
 RF
 1
2
3
 ø.
 0. 38
 19284 02
 0.
 1.23
 935918 02
 ø.
 2.22
 588357 92
 4
 0.
 2.8
 803003 02
 5
6
 9.
 3.63
 699093 02
 4.16 27300924 02
 0.
 Ø.
 5.58
 2209708 02
 3
 0.
 6.14 14739325 02
 9
 0.
 7.36 81179674 02
 19
 ø.
 8.54
 2930880 02
 11
 9.02
 0.
 1172500 02
 12
 9.07
 0.
 2503080 02
 13
 0.
 10.11 34232447 08
 0.
 14
 13.1
 74841 06
 15
 0.
 13.82
 499261 06
 16
 0.
 15.82
 3580 07
 52298 06
 17
 0.
 20.06
 13
 0.
 21.1
 85473 97
 198842 01
 19
 0.
 24.92
TOTALS
 170238488
 Ø.
INPUT OVERRANGE AT RT=
 5.75
PID
 10/09/87 18:03:21
 CH= "B" PS= 1.
FILE 1.
 METHOD 5.
 RUN 294
 THDEX
ANALYST: KNK
```

NAME PPB RT AREA BC RF

၁ ု

3.64 6.13 6.13

10.13

7.21

13.10

18.62

HALL

( )₄

C

10/09/87 18:43:28 CH= "A" PS= 1.

8.62

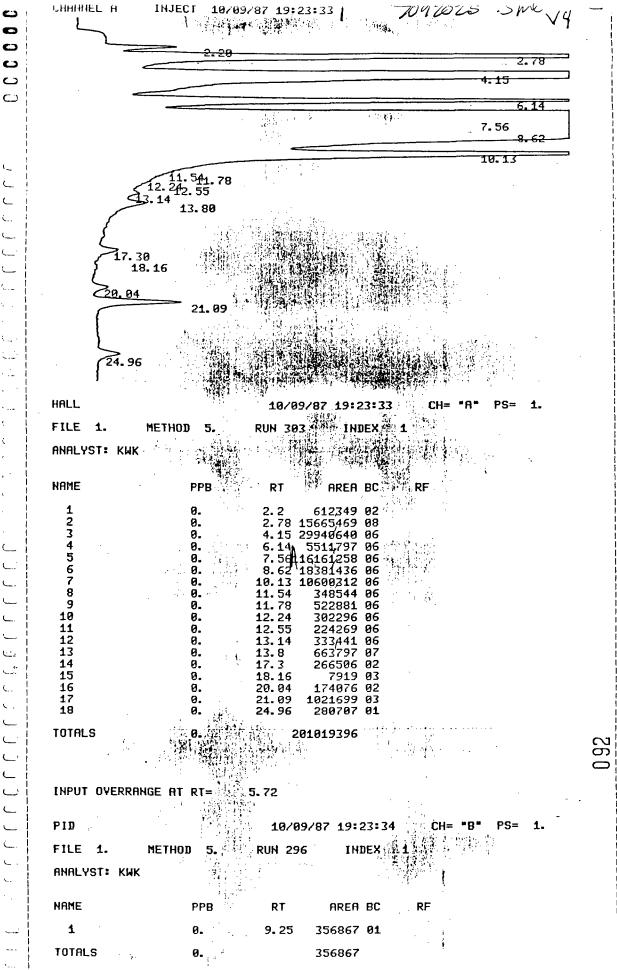
FILE 1. METHOD 5. RUN 302 INDEX 1

ANALYST: KNK

HAME	PPB	RT	AREA	BC	RF
1 2 3 4 5 6 7	0. 0. 0. 0. 0.	2.77 3.64 4.17 3 5.54 6.13 7.21 8.62 10.13	96324 165236 6485424 253453 85596 2999138 4768364 2250336	02 08 05 05 06	
8 9 10	9. 9.	13. 1 13. 62	12684 16054	91	
TOTALS	0.	4	7132609		

INPUT OVERRANGE AT RT= 5.72

PID 10/09/87 18:43:28 CH= "B" PS= 1.


FILE 1. METHOD 5. RUN 295 INDEX 1

ANALYST: KNK

NAME PPB RT AREA BC RF

1 0. 0.52 12412 01
2 0. 9.24 304469 01

TOTALS 0. 316881



Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

## Q.C. DATA REPORT

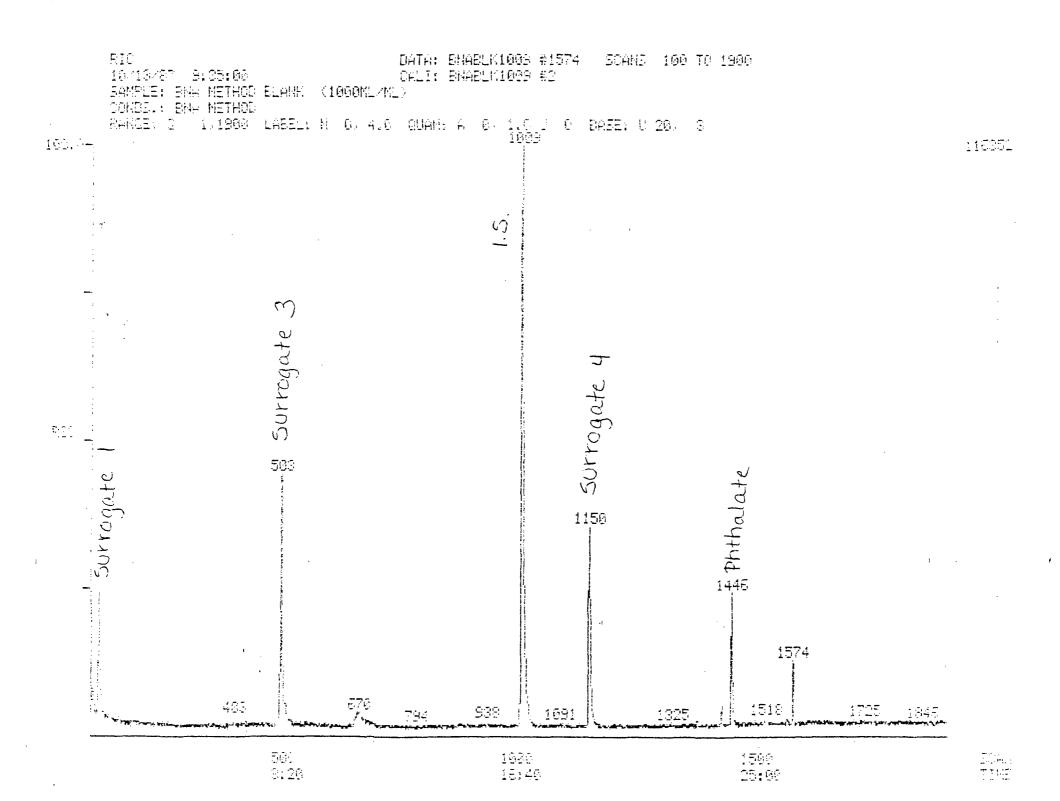
Analyst: W. Amundson

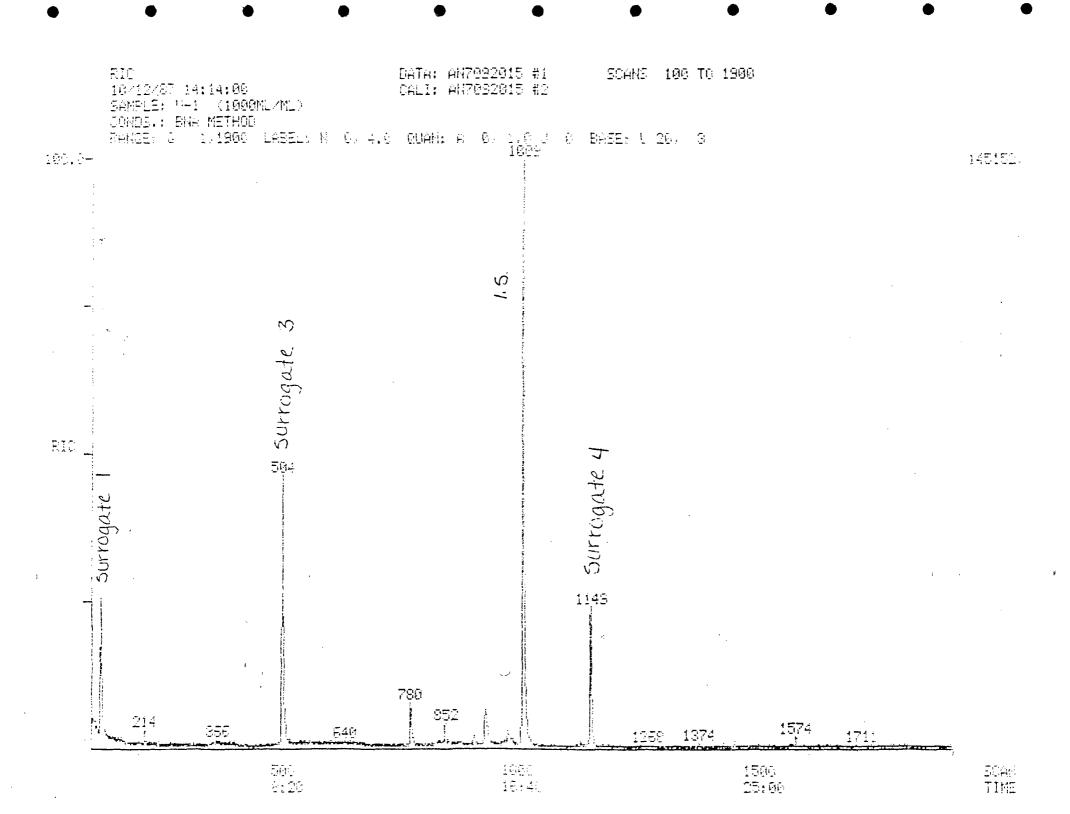
Date of Analysis: 10/12/87 Method of Analysis: EPA 625

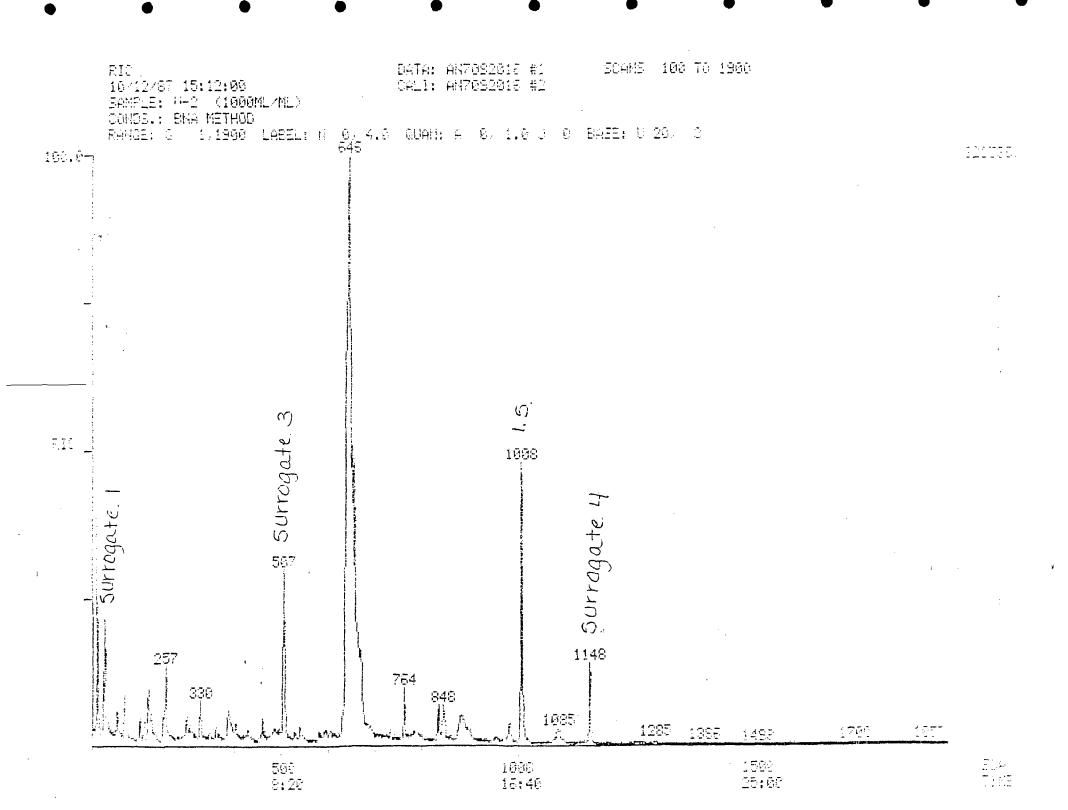
Detection Limit: 10

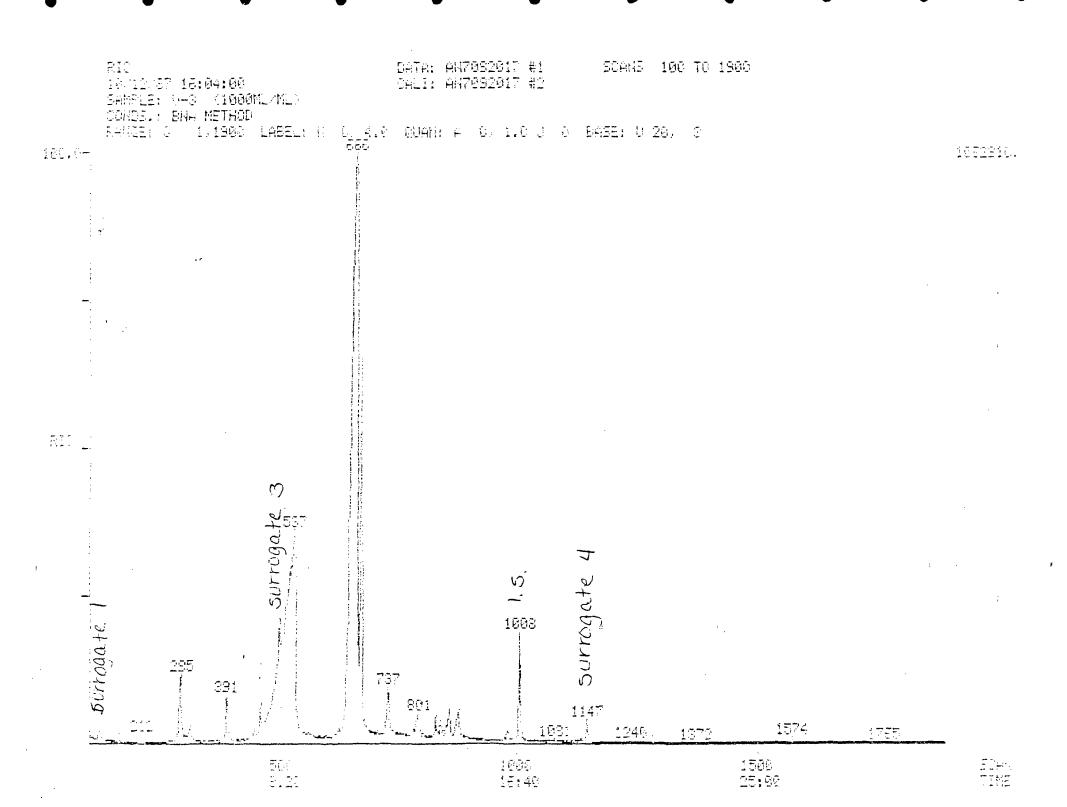
Units: ppb

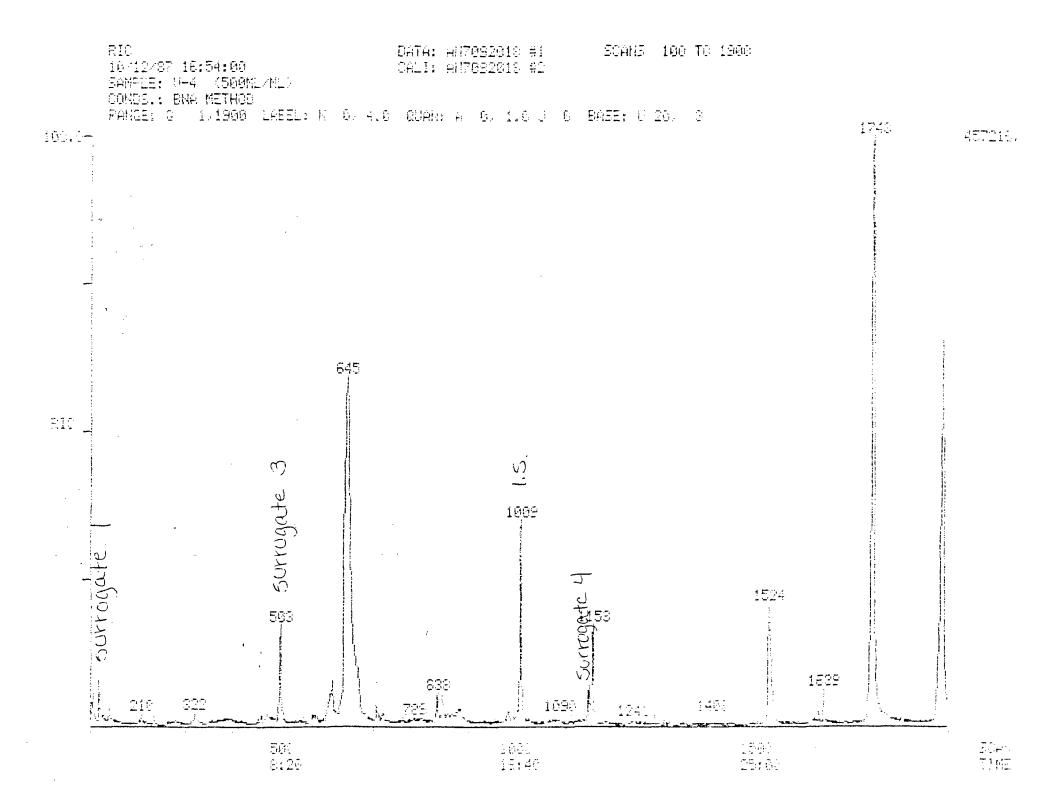
Sample Number	Analyte	Original Result	Duplicate Result	% Deviation
7092018	Pentachlor- ophenol	< 10	< 10	0.0


Sample Numb	er <u>Analyte</u>	Sample Contribution	Spike Added	Spike Result	% Recovery
7092015	4,4-Dibromo- biphenyl	0	20	17	86
	D8-Naphthalen	e 0	20	15	74
	2-Fluoropheno	1 0	20	.11	5 <b>7</b>
	Pentafluoro- phenol	0	20	7.4	37 .


SEQUOIA ANALYTICAL LABORATORY

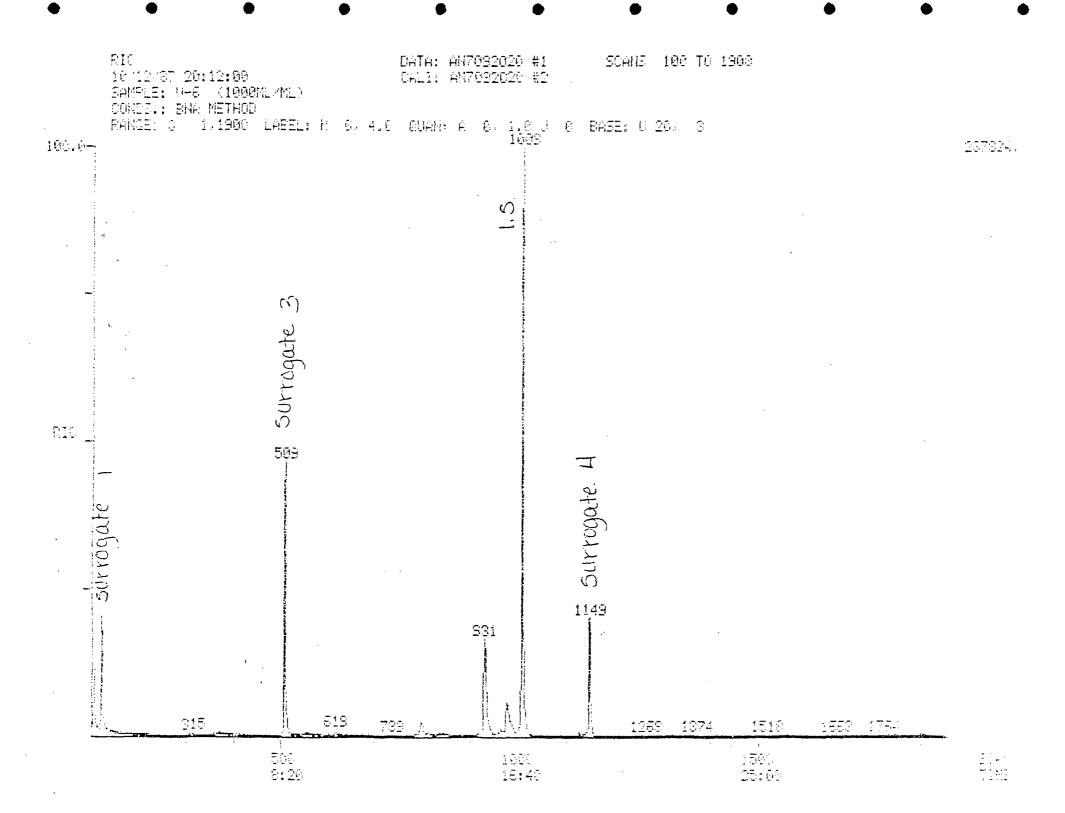

Arthur G. Burton
Laboratory Director


RIC 10/12/27 13:24:00 DATA: BHASTD1012 #1 CAL1: BHASTD1012 #2 SCANS 100 TO 1900 10/12/8T 18:24:00 SAMPLE: BNA STO (40-200NG) CONDE.: BNA METHOD RANCE: G 1/1800 LAEBL: N 6/4.0 GUAN: A 6/1.0 U 6/BASE: U 26/3 100.00 RIC 25:00 8 : 20 16149

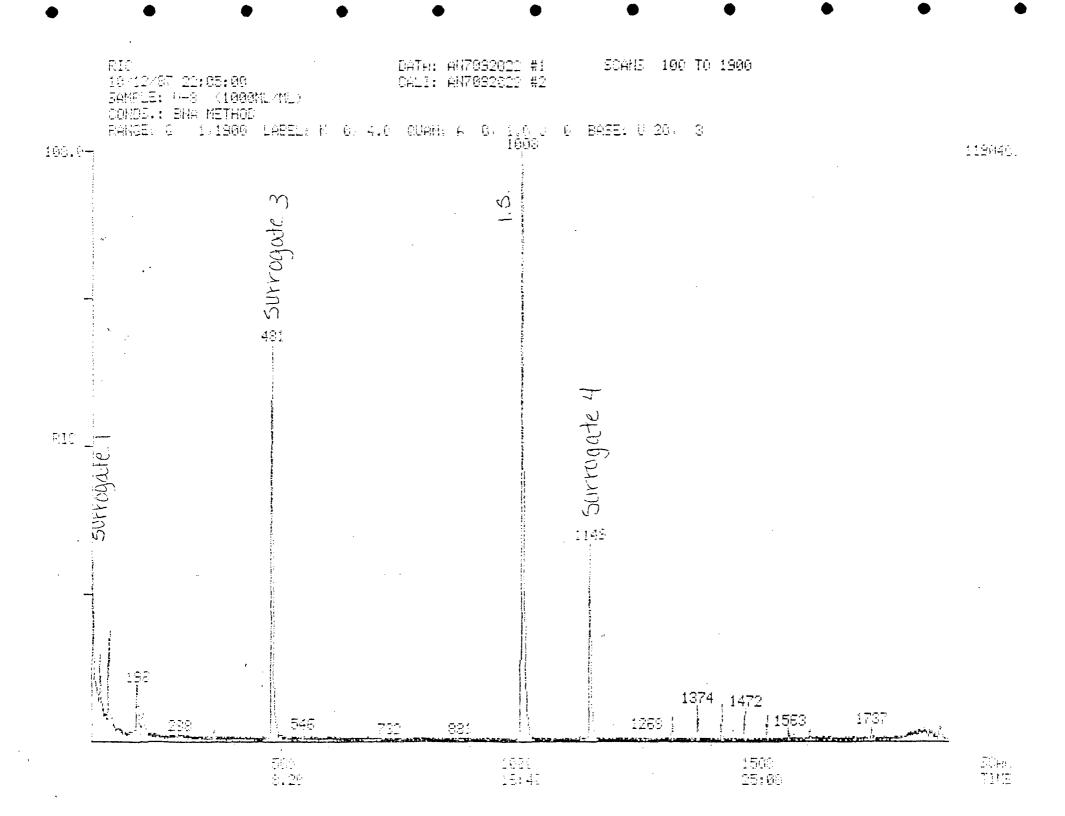

RIC [18/13/87 8:39:00 DATA: BMASTD1018 #1 CALI: BMASTD1019 #2 SCANS 100 TO 1900 344654. 100.0-225 509 1011 945 144€ RIC 1180 1533 35E 1345 1880 18:48 1500 25:00 500 8:20

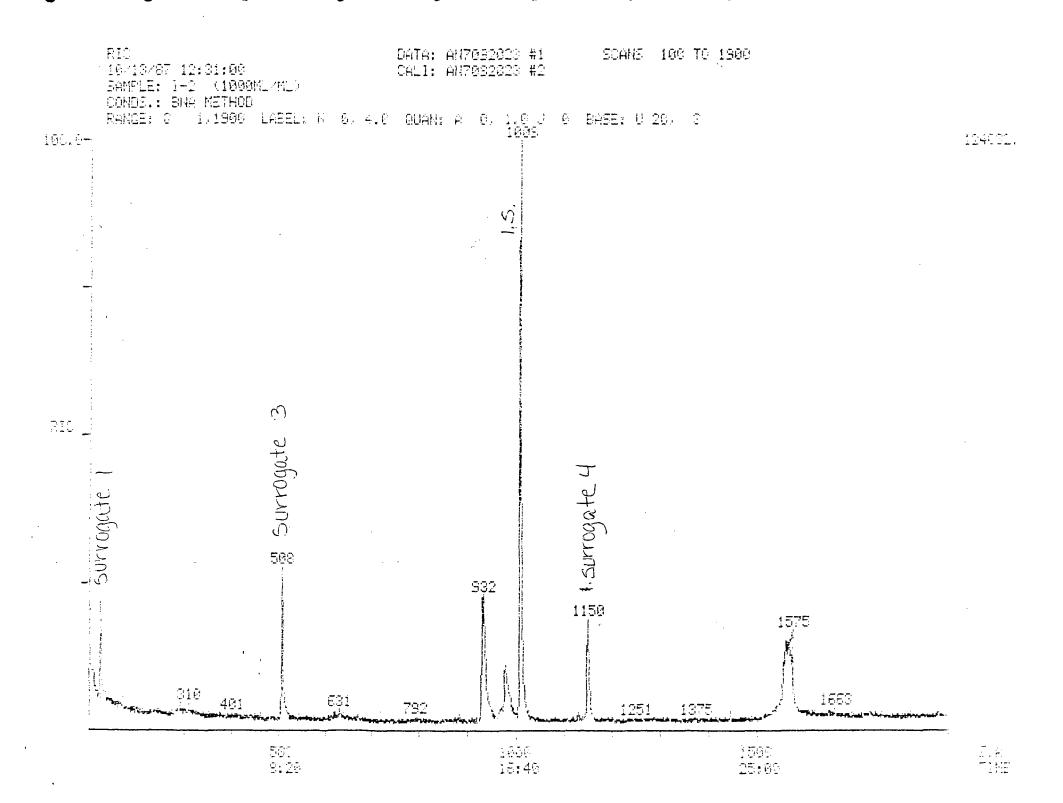


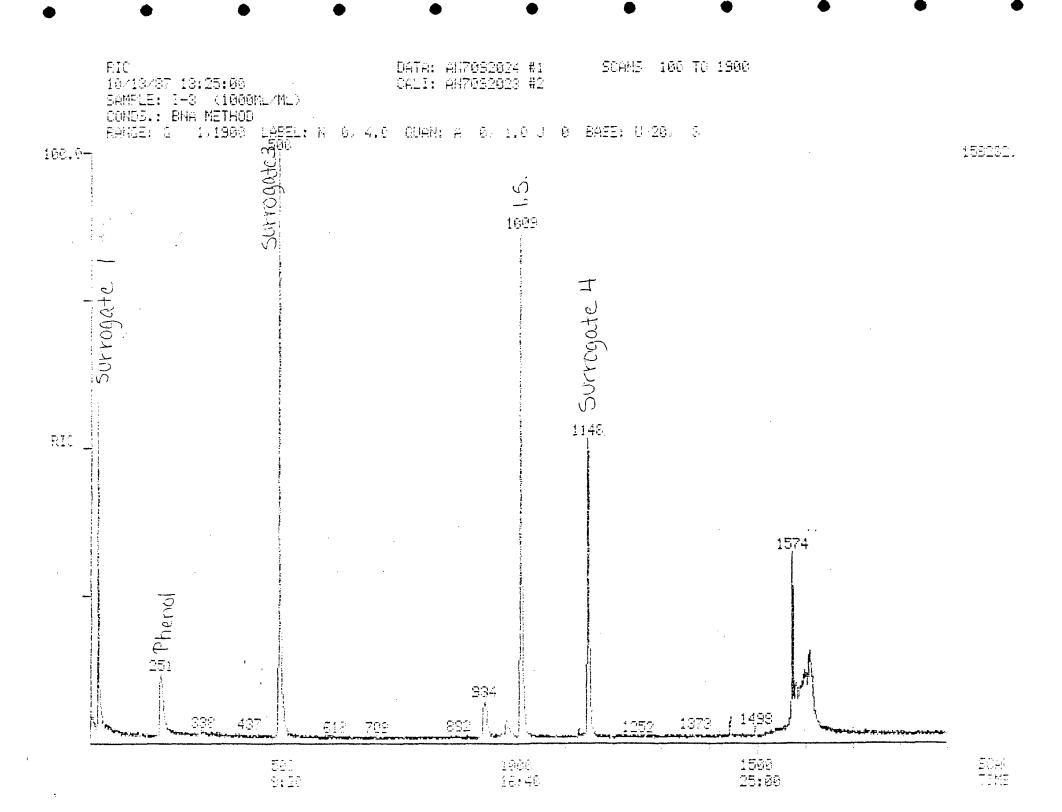








DATA: AN7882818DU #1 CALL: AN7882818DU #2 RIC SCANS 100 TG 1900 18/13/27 11:25:00 SAMPLE: U-4 DUP (508ML/ML) CONDS.: BNA METHOD RANGE: 6 1/1906 LABELS N 0/4.6 GUANS A 6/1.8 U 0 1745 180.6-515584. 520 643 (;) SUrrogate. surrogale 1 1009 1526 1639 638 1497 2:5 1891 -----1246 569 3:20 1685 15:46 1506 25:00






PIC DATH: AN7092021 #1 BUHNS 100 10 10 13/87 10:31:00 CALI: AN7092021 #2 SAMPLE: N-7 (1000ML/ML) CONSS.: BNA METHOD RANSE: 0 1/1900 LASEL: N 0/4.0 QUAN: A 0/1.0 J 0 BASE: U 20/ 3 1008 SCAMS 100 TO 1908 100.6surrogate 4 FIIC 3 Surregate. 1150 565 1574 885 1701 1294 1424 50° 5:18 1660 18:48 1560 25**:**86









Wahler Associates 1023 Corporation Way Palo Alto, CA 94303 Attn: Bob Breynaert Date Sampled: 09/25/87 Date Received: 09/28/87 Date Reported: 10/13/87 Project No. JCO-104H

#### Q.C. DATA REPORT

Analyst: G. Brock

Date of Analysis: 10/12/87

Method of Analysis: Common Solvents

Detection Limit: 50

Units: ppb

Sample Number	Analyte	Original Res	nupiles	te Result &	Deviation
7092015	Acetone	< 50	<	50	0
Sample Number	Analyte	Sample Contribution	Spike Added	Spike Result	% Recovery
7092015	Acetone	< 50	600	460	76

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton
Laboratory Director

```
Smls #D.1.
 23:11 87/10/12
:51
 MODIFIED
 r BGH
10
 1.60
 2:54
 4.08
 4.99
 В
 5.93
 €.41
 Ŗ
 8.50
 9.84
```

87/10/12 RUN 1 🗇 23:11 CALCULATION: % METHOD 9 MODIFIED AREA % AREA  $\mathbb{E} \, \mathbb{C}$ ET 26.5996 1.60 1.6496 Ţ 0.0658T 1.0579 2.61

17.05

18.28

FÉEHU

1) # STD. 22:34 87/10/12 MODIFIED - BGH MeOH ETHANOL > 2.84 ACETONE 4.54 ISOBUTYL ALCOHOL 9.02 3.37 13.16 17.26 LBEHD

```
\Gamma_{\bf k} = \Gamma_{\bf k}
 1.4955
 4.0500
 6.13
 3.1755
 1.1615
 IJ
 8.43
 0.3685
 7
 1.0075
 9.55
 0.9073
 2.4396
 Ţ.
10.06
 0.9509
 0.3478
10.01
 0.3758
 1.0276
11 PEAKS
 ⇒ AREAZHT REJECT
```

87/10/12

# 5mb # 7092015

.

```
9 MODIFIED

1.14
1.71
2.08
32,076
3.57
4.21
4.49
5.34
5.30
6.134
6.67

8.40

10.36
10.36

BEIM.29
```

5.34

5.89

20:25

_	RUN	5	20:25	87	Z10Z12
•	METHOD	9	MODIF	IED	CALCULATION:
	RТ		AREA	BC	AREA %
	1.14		0.5707	T	6.6703
	1.71		0.3744	Ţ	4.3762
	2.98		0.0807	U	0.9440
	2.96		0.5480	Ţ	6.4041
	3,97		0.2299	<u>  [</u> ]-	2.6875
	3.57		0.9544	Ţ.	11.1504
	4.21		0.2914	Ť	3.4059
•	File Sta		0.8713	1:	6.1161

1.3629

0.7564

15.9276

```
18.26
 Im/ # 7092016.
 9 PEAKS > AREA/HT REJECT
 0:25 .87/10/12
\mathfrak{P}
 MODIFIED
10
 - BGN
 1.54
 В
 ACETONE
 5.90
 7.68
 8.14
 8.99
 9.98
 10.35
 11.56
 12.86
 13.70
 14.29
 14.77
 15.66
 16.17
 18.30
 20.08
```

4.6996

```
5 ml 7092017
 1:11
 87/10/13
 14
е донта
 MODIFIED
 32 C 10
 r BGH
 0.86
 1.72
 2.30
2.64
 3: 31
 4.21
 4.69
 5.91
 6.41
 7.69
 8.17
 8.95
 9.98
 В
 12.85
 13.74
 14.78
 15.64
 16.12
 17.30
 18.30
 19.95
 21.72
 L END
 87/10/13
 RUH
 14
 1:11
```

CALCULATION: % METHOD 9 MODIFIED AREA % AREA · EC RT 0.2458 0.86 0.0889 T 0.7978 1.72 0.2885Ť 9.2929 0.8102 2.39 T 0.4364 0.1578 2.64 T 0.6564

0.2409

5 mb. 7092018 1#500 800 100/10 MODEL FERR 1:611 11.01. 1.53 4:29 4,63 5.14 5.90 5.29 7.67 9.98 E 12.84 13.72 14.76 15.65

#### MODIFIED

```
BGN

8:03

1.53

2:01

1.53

2:01

1.53

4.94

B 5.90

6.37

B 7.65
```

7.65

8.34 8.97

9.99

Ŀ

12.84

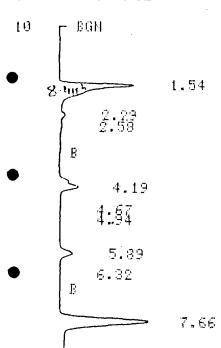
13.72

15.66

16.11

.1

18.28


19.81

EHD

```
3:26 87/10/13
1.7
 MODIFIED
 10
 r BGH
 1:53
 3.45
 4.19
 4.96
 5.90
 6.34
 7.64
 8.36
 9.17
 9.98
 В
 12.85
 13.72
 15.63
```

66

#### 9 MODIFIED



· 12.84

13.68

9.97

Ε;

15.62

B

18.27

END

```
4:55 87/10/13
- 3
 MODIFIED
 BGH
■ 10
 1.54
 2700
 2.30
 4.84
 5.89
 6.33
 7.66
 8.34
 9.18
 В
 9.97
 В
 12.83
 13.70
 15.63
 18.25
 19.58
```

Ziili

5 ml 7092022

```
19 5:40 87/10/13
```

```
+ 9 MODIFIED
```

```
10 BGN
1:.52
2:60
3.63
4.03
1:54
5.88
6.32
```

7.65

B 9.95

В

12.82

13.69

14.74

15.60

> 18.25

19.62

В

EHD

#### 9 MODIFIED

```
• 10 BGH 0.24

1.72
2.58

4.98

4.96

5.86
```

```
7.64
8.31
9.19
9.94
```

```
12.83
13.69
15.62
```

16.06

```
18.25
19.62
B
```

EHD

●18 PEAKS > AREA/HI REJECT

5mls #7092015 + 9112.

```
23:35 87/10/12
MODIFIED
 - BGH
 0.64
 HEMMION
 2.83
 Normale
 4.51
 4.96
 5.88
 7.68
 §: 49
 8.96
 9.98
 В
 12.89
 13.73
 15.62
 16.04
 17.28
```

N 11 23:35 87/10/12

THOD 9 MODIFIED

18.22

Leeno

CALCULATION: %

```
0.0010
 ,O.49
 0.0196
 1.20
 4.4188
 82.5126
 0.3055
 5.7054
 Γ
 0.3453
 6.4489
 1.11
 3.7218
 2,98
 69.4965
 T
 1286,2490
 68,8837
 3.60
 3,24
 244,9159
 Γ
 13.1162
 6.14
 156.5871
 8.3858
 T
 0.6157
 8.43
 11.4985
 8.90
 0.1026
 1.9168
 0.0993
 10.11
 1.3559
 U
 0.0036
 11.29
 0.0674
 ⇒ AREAZHT REJECT
 12 PEHRS
 Smls # 7092015
 19:53
 87/10/12
 MODIFIED
 F (64)
1.1
 1.20
 2.11
 2.98
 3.59
 3.95
 4.47
 6.13
 8.43
 9.55
 10.06
 10.81
 երբրը
 19:53 87/10/12
CULL
 -4
 MODIFIED
 CALCULATION: %
HETHOR 9
 角尾色角
 EC
 育民医白 器
```

5.5283

1.0159

1.00

 $O = f \cdot f$ 

2.0220

ម ១៧៦

Ī

 $\Pi$ 

HPStall on

111.1.19

Letu

APPENDIX E

Wahler Associates

WA Project Number: Jco-104/f
Page / of 2

#### Field Sample Chain of Custody Record

Source of Sample(s) Mountain View	Collector Paul Schmitch
Address	Affiliation Waller Assoc.
	Address 1023 Commention way
Phone ( )	P-10 A100 CA 8405
Report to (1) Robert Broynaer	Phone (407) 968-62-50
Sample Information	
Lab No. Field No. Date Time Type (2)	Depth Remarks (Suspected Contaminants, Field Conditions, etc.)
	See Arrached
	_
Chain of Possession	·
Relinquished by Date Time (Signature and affiliation)	Received by (3) Date Tim (Signature and affiliation)
1. Filly 5/20187 2:30	s lat Bush 80080 2.3
2	
3	

⁽¹⁾ There is a separate Request for Analysis form that should be filled out by the collect and given to the Laboratory when samples are delivered.

⁽²⁾ e.g. water, sludge, soil, etc.

⁽³⁾ If any samples are not intact at time of transfer, please describe on the back of this form.



Ged

otechnical and Water Re		SIS REQUEST FO	RM		
		<u> </u>		Page	_of
	Seguria	Date Sampl	e Shipped_	8-20-8	37
	V				
Wahler Associates Lab staff can use ments.					
Your Sample I.D.	Matrix	Container	Ana	ılysis Requ	ested
tco-817-79P	14,0	ZUOA	EPI	7-601	
JCO-817-tank	<u> </u>	ZUOA	EPA	1-601	
		<del></del>			
		<u></u>	-		
				<del></del>	
				<del></del>	
	<del></del>				<del></del>
	-				
				<del></del>	
		•		<del></del>	
			<u> </u>	<del></del>	<del></del>
	<del></del>				
	<del></del>				
Comments Wn	yen turnary	nd 10 10-	15 days	. (957.1	2055/1/2
day for res	WITS IS Sept	-inher 11, 198	7. Plife	molide-	alf
dayfor res	a plus chien	matosrams	Per rem	st of R	WQCB
Contact Person	Bus Brey 1960	T (YIT 960	2-6250	·	
Contact Person But Grey West (Yest 968-6250  Name Telephone					
Lab Project Manager (if known) Scott Cocanour					
•					

Wahler Associates

WA Project Number: TCO-1041Page 1 of 2

Field Sample Cha	in of Custody Record
Source of Sample(s) Mantain View	collector Paul Schmidt & ether
Address	Affiliation Wahler ASSOCIATES
	Address PO BOX 10023
Phone (415) 468-6250	Palo Alto CA 94303
Report to (1) Rubert Breynaer	Phone (415) 968-6250
Sample Information	
Lab No. Field No. Date Time Type (2)	Depth Remarks (Suspected Contaminants, Field Conditions, etc.)
	See Attached
	See Attached Avalysis Request Form
	$\sim$
Chain of Possession	
Relinquished by Date Time (Signature and affiliation)	Received by (3) Date Time (Signature and affiliation)
1. Charly flutto 813/187 2:	4 Jama Manh 8/21/87 14:14
2	
3	

⁽¹⁾ There is a separate Request for Analysis form that should be filled out by the collector and given to the Laboratory when samples are delivered.

⁽²⁾ e.g. water, sludge, soil, etc.

⁽³⁾ If any samples are not intact at time of transfer, please describe on the back of this form.



Geotechnical and Water Resources Engineering

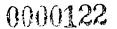
ANALYSIS REQUEST FORM	
	Page Z_of_G

Anamemes Date Sample Shipped_ Wahler Associates will indicate a contact person and phone number which the Lab staff can use to obtain or verify the appropriate analytical require-

Your Sample I.D.	Matrix	Container	Analysis Requested -
U-2	Ho	UOA	EPA601/602 Plus MEKand
			<u> Xylones</u>
		<del></del>	*
	<del></del>	<del></del>	
			<del></del>
		<del></del>	
			· · · · · · · · · · · · · · · · · · ·
Comments 10 15	day Tu	maround	please supply plus chromatyrans
Cab QA/G	C ducin	nen75 17W	plus chromatix rams
For both and	(45eg The	ne 15 Circly	Tobe MeThylere Chlonde in Sampa
Contact Person_Bo	D Breynach Name Paul Schw	Tor (415) 90	68-6250 elephone
Lab Project Manager	(if known)		

Wahler Associates WA Project Number: 500-104H
Page 1 of 2

#### Field Sample Chain of Custody Record


Source of Sample(s) Mantain New, CA	Collector Paul Schmidt
Address	Affiliation wahler Assoc.
	Address PO Bot 10023
Phone ( )	Palo Alto CA 94303
Report to (1) Bob BreynaerT	Phone (415) 88-6250
Sample Information	
Lab No. Field No. Date Time Type (2)	Depth Remarks (Suspected Contaminants, Field Conditions, etc.)
	See 975ched
	See attached analysis request form.
Chain of Possession	
Relinquished by Date Tim (Signature and affiliation)	(Signature and affiliation)
1. 47 (1/4) 9125187 45	4 Fredan, Carro 918187 418
2	
3	

⁽¹⁾ There is a separate Request for Analysis form that should be filled out by the collected and given to the Laboratory when samples are delivered.

⁽²⁾ e.g. water, sludge, soil, etc.

⁽³⁾ If any samples are not intact at time of transfer, please describe on the back of this form.







Geotechnical and Water Resources Engineering

ANALYSIS	REQUEST	FORM

	-	Page 2 of 2
ANRESCO Date Sample	Shipped	9-25-87

Wahler Associates will indicate a contact person and phone number which the Lab staff can use to obtain or verify the appropriate analytical requirements.

Your Sample I.D.	Matrix	Container	Analysis Requested
V-Z	420	(Z) UOA	EPA 601/602 Plus MEK, Xylenes
V-4	H20	(2) UOA	EPA 601/602 Plus MEKand Xylene
Field Blank (9/24)	1120	(1) VOA	EPA 601/602 Plus MEK and Xy love
Field Blank (9/25)	Ho	(1) voA	EPA601/602 Plus MEK and Kyloney
Method blank	40	( VOA	EPA 601/602 PhsMEK and Xy leves
<u>-</u>			
			<del></del>

Comments Resolts due by Fording October 9, 1987, Please SUBMIT! dILUTION FICTOS: detection limits based on limits of quantification; calculated recoveries of internal Standards and/or surrogates. Asso state who Than the o samples were filtered before or during

Contact Person Bob Breynaer L

(45) 988-6250 Telephone

Sample analysis - Schmit ananmatims of blanks amilyzed be fore and down

Lab Project Manager (if known)

Sample analysis. part Cell If you have as

Wahler Associates

WA Project Number: JCO-1041
Page L of Z

Field Sample Cha	ain of Custody Record
Source of Sample(s) Mountain View	collector Paul Schmidt and the
Address	Affiliation Wahler Associates
	Address POBOX (COZ 3
Phone ( )	Palo Alto, CA GY3C
Report to (1)	Phone (415) 968-6250
Sample Information	
Lab No. Field No. Date Time Type (2)	Depth Remarks (Suspected Contaminants, Field Conditions, etc.)
	0 - 1
·	
Chain of Possession	
Relinquished by Date Time (Sig <del>na</del> ture and affiliation)	e Received by (3) Date Time (Signature and affiliation)
1. Jan Dohnut 8/3/184 10:	23 / 8 13/159 10:3
2	
3	

(2) e.g. water, sludge, soil, etc.

⁽¹⁾ There is a separate Request for Analysis form that should be filled out by the collect and given to the Laboratory when samples are delivered.

⁽³⁾ If any samples are not intact at time of transfer, please describe on the back of this form.



4	ARTICLE AND THE INC.	7330010123		-	•	
Ged	otechnical and Water Re		SIS REQUEST FO	DRM .	Page 2 of 2	
	_	Seguna	Date Sampl	e Shipped	8.58-87	<del></del>
		s will indicate a e to obtain or ver	•	-		e
	Your Sample I.D.	<u>Matrix</u>	Container	Ana	lysis Requested	
	V-1 V-2	H20	VOA	DEPA C	01/602 Plus	MEK ANI) XYlene
	U-3	1/20	UOA -	2) Total	Hydroculousas	Print Thinne
	<u>U-4</u> <u>U-5</u>	H20	UOA	3 Alcoh	ols/Ace Tone	-
	U-7 T-1	150	12 Jai	9 EPA	604-Phenol	<u>S</u>
2	I: 2	1/20	LOA	EPA 6	24 Openscav	2
3	T-3	Ho	WA	E.PA6	24 Seascai	<del>-</del> <del>-</del>
4	F2 -	1/20		EPA-60	1/602 - Perfo	im duplic
(5)	aField Blank	(6-27/828)120	RICHIS		1/602	Sample
6	2 MeThed Blank	(8-27/6-28) (20	2 UOA 13	EPA 60	11/002	- (we will - pay A - it
	Comments Places  Plus Chrome  Turner cure  Contact Person	e include al	l Cabarat	tury OA	100 deceme	day
		Name Paul Schr	wide To	elephone	IABELED PRESER	EP (HOLOH)
	Lab Project Manag	ger (if known)	Scott Coco	anour		

WA Project Number: Jco-104H Page 1 of 2

Wahler **Associates** 

Field Sample Chain of Custody Record

Source of Sample(s) Mantain New, CA	Collector Paul Schmidt
Address	Affiliation wahler Assoc.
	Address PO Box (cor 3
Phone ( )	Palo Alto CA 94303
Report to (1) Bob BreynaerT	Phone (415) 888-6250
Sample Information	
Lab No. Field No. Date Time Type (2)	Depth Remarks (Suspected Contaminants, Field Conditions, etc.)
	See attached
	· · · · · · · · · · · · · · · · · · ·
Chain of Possession	
Relinquished by Date Tim	
(Signature and affiliation)  1. The first 9 120167 9 1	(Signature and affiliation)  84 Carolyn Andus M 9128187 9:34
V -	Tarle (tuted) Seguara Cata 9 128187
	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S
3	

⁽¹⁾ There is a separate Request for Analysis form that should be filled out by the collect and given to the Laboratory when samples are delivered.

⁽²⁾ e.g. water, sludge, soil, etc.

⁽³⁾ If any samples are not intact at time of transfer, please describe on the back of this form.



0000122

F- H

technical and Water Reso	= =	SIS REQUEST FO	NRM	
	<u> </u>	NEQUECT 1		Page 2 of 2
	Seguora	Date Samp	le Shipped_	9-25-07
Wahler Associates was tab staff can use tale ments.				
Your Sample I.D.	Matrix	Container	Ana	alysis Requested
N-5 N-1			DEPA 6	01/602 Plus MEK and XI C Hydnicarbuns as Paint TU
U-3			2 70ta	l Hydrocarbons as Paint To
<u> </u>			3 Alcon	604 Ptenols
V5 {	Hro	(Z) UOA	(4) EPA-	604 Ptenols.
\ 				
T-1			<del></del>	<del></del>
T-2				
V-14	1/20	2 404	EPA 601/	1602 Plus MER + Xylone
			* NOTE.	perform duplicate an
			on same	ole from well U-4
		<del></del>	we wil	1 pay for ic.
		<del></del>		<del></del>
Comments Please 1 WENEED A	ncivole all a	PALAC datas	P es peu	formal previously.
WE NEED A	LC RESULT	5 INWRITTE	EN FORM	PLUS QA/QC
				SOLUTE LATEST.
Contact Person Bo		*		
•			•	(

APPENDIX F

•

lacktriangle

0000122

DATE: 27 AUGUST 184

PROJECT NO .: JCO 104 H

LOCATION: JASCO

SAMPLERS: PF 2

SAMPLE ID: V-1

3BV: 12

WATER LEVEL	GALLONS REMOVED	Time	TEMP. C°	рН	Eh (mV)	COND.	DO mg/1	Q GPM	вон
23.40	Ø								41.5
	2.0		66.7	7.78		1950			
	5.0		66.1	7.18		1810			
	9.0		659	7.15		1830			
	12,0	-	66.1			1850			
							<del></del>		
					<del></del>				
<del></del>					<u> </u>			·	
		<del></del>			<del></del>				
		L <u></u>							
		<u> </u>							<del> </del> -

TIME SAMPLED:

COMMENTS: 3,0 EV

SAMPLES TAKEN

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., etc.

ASBESTOS

EPA 601

EPA 602

0000122

DATE: 27 AUGUST

PROJECT NO .: JCO 1044

LOCATION: TASCO

SAMPLERS: 554 2

SAMPLE ID: V-2

3BV: 6.0

Water Level	GALLONS REMOVED	TIME	TEMP. C°	рН	Eh (mV)	COND.	DO mg/l	Q GPM	вон
() () ()	15								
	7.0		66.1	6.90		1680			
	5.0					1760			
	9.0		65.6 65.7	6.91		1750			
		-							
,									
			,				-		
				1.			l		
		· ·	<del> </del>			<del> </del>			ļ <u> </u>

TIME SAMPLED:

COMMENTS: 4,5 BU

SAMPLES TAKEN

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., 8tc.

ASBESTOS

EPA 601

EPA 602

DATE: 8-28-87

PROJECT NO .: TOO 104H

LOCATION: JASCO

SAMPLERS: C.J. Q.

SAMPLE ID: V-3

3BY: 38 gals

WATER Level	GALLONS REMOVED	TIME	TEMP. C°	рН	Eh (mV)	COND.	DO mg/l	Q GPM	вон
22.75	Ø								
	2		67.7	6.73		4070			
	Q V		67.2	6.75		4090			
	15		67.6	6.75		4070			
	25	,	67.7	6.81		3990			
	35		64.9	୯ . ଅଧି		3970			
	40		67,9	630		3980			
						ļ			
<u></u>									
					I				<u> </u>

TIME SAMPLED:

COMMENTS: 3,16 EV

SAMPLES TAKEN

EPA 824

EPA 825

EPA 608

METALS

CYANIDE

CHLOR., SULF., etc.

ASBESTOS

EPA 601

EPA 802

TR' TOUDUA FE :STAD

PROJECT NO .: JCO 104H

LOCATION: JASCO

SAMPLERS: P.Z. 2.

SAMPLE ID: V-4

3BV: -

WATER LEVEL	GALLONS REMOVED	TIME	TEMP. C°	На	Eh (mV)	COND.	DO mg/l	Q GPM	вон
24.15			67.6	J.11		1770			
							·		
-									

TIME	SAMPLED:
	O

COMMENTS: Sample towar for Pump Ellhour hope

SAMPLES TAKEN

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., etc.

ASBESTOS

EPA 601

EPA 602

DATE: 8-27-84

PROJECT NO .: JCO 104 H

LOCATION: JASCO -

SAMPLERS: 093 2.

SAMPLE ID: V-5

3BY: 5,5

WATER LEVEL	GALLONS REMOVED	Time	TEMP. C°	рН	Eh (mY)	COND.	DO mg/l	Q GPM	вон
25,70	Ø								i
	1.0	<u> </u> 	66.2	7.44		1380			
	2.5		65.6	7.57		1470		·	
	4.0		65.6	7.56		1480			
	5.5		65.6	ł		1480			
							I	,	
							-		
								·	

TIME SAMPLED:

COMMENTS: 3.0 BU

SAMPLES TAKEN

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., stc.

ASBESTOS

EPA 601

EPA 602

0000122

DATE: 24 AUGUST 184

PROJECT NO .: JCO 104 H

LOCATION: TAECO

SAMPLERS: C.S. Q

SAMPLE ID: V-6

3BV: 14.6

Water Level	GALLONS REMOVED	TIME	TEMP. C°	На	Eh (mV)	COND.	00 mg/1	Q GPM	вон
2.4.38	9								
	7.0		67.4	7.4.1		1340			
	5.0		66.4	7.32		1350			·
	100		66.6	7.24		1370			
	15.0	,	66.4	7.23		1390			
							-		

TIME SAMPLED:

COMMENTS: 208 84

SAMPLES TAKEN

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., 8tc.

ASBESTOS

EPA 601

EPA 602

0000122

DATE: 8-28-87

PROJECT NO .: JCO 104 H

LOCATION: JASCO

SAMPLERS: OF 2.

SAMPLE ID: V-7

<u>3BY:</u> 6. ≤

WATER LEVEL	GALLONS REMOVED	TIME	TEMP. C	pH:	Eh (mV)	COND.	DO mg/t	Q GPM	вон
23.02	Ø								
	Ø 2		69.0	7.03		3080			
	4-		68.8	6,99		डे । प्र			
	(-		68.7	l t		3 160		 	
	7-	-	68.7	7.00-		3130			
								i	
						1			
								<u>.                                    </u>	
					, <del></del>				

T	IME	SAMPLED:	

COMMENTS: 3.23EU

SAMPLES TAKEN

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., 8tc.

ASBESTOS

EPA 601

EPA 602

<b>W</b> Wahler
Associates

0000122

DATE: 27 AUGUST 184

PROJECT NO .: JCO 104 H

LOCATION: JASCO

SAMPLERS: PF. 2

SAMPLE ID: I - 1

3BY: 15.5

WATER Level	GALLONS REMOVED	Time	TEMP. C°	рН	Eh (mV)	COND.	DO mg/1	Q GPM	вон
24.91	Ø								
	1.0		66.5	7.67		1290			
	5.0		663	7.54		1330	· · ·		
	10.0		66.3	7.40		1300	11		·
	15.5		66.2	7.40		1300	 		
!									
									·

TIME SAMPLED:

COMMENTS: 3000

SAMPLES TAKEN

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., 8tc.

ASBESTOS

EPA 601

EPA 602

W	Wahler
Δςς	nciatos

0000122

DATE: 6-28-87

PROJECT NO .: JCO 104 H

LOCATION: JASCO

SAMPLERS: G.F. 2.

SAMPLE ID: I-2

3BV: 15.5

WATER LEVEL	GALLONS REMOVED	Time	TEMP. C°	Нq	Eh (m¥)	COND.	DO mg/i	Q GPM	вон
23.77	Ø								
	2,		70.1	10,64		1110			
	5	·	70.4	8.22		1270		: 	
	10		67.5	7.28		1400		 	! 
	12	-	67.6	7.37		1390			
	15.5		1	7.26		1400			
	·								
i									

TIME SAMPLED:

COMMENTS: 3,0 EV

SAMPLES TAKEN

EPA 824

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., 8tc.

ASBESTOS

EPA 601

EPA 802

0000122

DATE: 8-28-37

PROJECT NO .: JCO 104 H

LOCATION: JASCO

SAMPLERS: O.F. 2.

SAMPLE ID: I - 3

3BV: 15.5

WATER LEVEL	GALLONS REMOVED	TIME	TEMP. C	pH	Eh (mV)	COND.	D0 mg/1	Q GPM	ВОН
23.50	Ø								
	Có		698	759		12.80			
	January .		67.8	7.48	··	1290			
	10	·	67.5 67.5 64.4	7.45		12.80	· .		
	155	-	67.1	7.44		12,50			
					<del>-</del>				
								· · · ·	
					·				
		<del> </del>							

TIME	SAMPLED:

COMMENTS: 300 EV

SAMPLES TAKEN

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., 8tc.

ASBESTOS

EPA 601

EPA 602

0000122

DATE: 24 Sept. 187

PROJECT NO .: JCO 104H

LOCATION: TASCO

SAMPLERS: P.S. S.

SAMPLE ID: V-1

3BY: 12.0 gals

WATER LEVEL	GALLONS REMOVED	Time	TEMP. C°	На	Eh (m¥)	COND.	DO mg/l	Q GPM	вон
	1								48.0
	1,0	1:34	62.8	7.62		1920			
	3.0		65.5	7,55	 	1910			
	5.0	(:4(	65.2	7.31		1910			
	7.5		65.4	7.31		OFE			
	10.0	1:49	65.3	7.27		1880			
	12.0	1152	65.4	7.31		1870		<u>.                                    </u>	
<u></u>									
	<u>.</u>								

TIME SAMPLED: 200

COMMENTS: TO BIRTY = 12 NTO

SAMPLES TAKEN EPA 624 EPA 625 EPA 608 METALS CYANIDE CHLOR., SULF., etc. ASBESTOS EPA 601 EPA 602 EPAG04

0000122

DATE: 25 Sept. 87

PROJECT NO .: JCO 104+1

LOCATION: JACCO

SAMPLERS: Pof 2

SAMPLE ID: V-D.

3BY: 6.0

WATER LEVEL	GALLONS REMOVED	Time	TEMP. C°	На	Eh (mV)	COND.	00 mg/1	Q GPM	вон
	0								350
	1.0	2:45	64.5	7.04		2320			
	٥.۵		64.3	7.09		23 (0	<del> </del>	·	
	4.0		64.3	7.11		2290	····		
	Sig		44.4	7.11		2700			
	6.0	2:35	64.3	7.12		2300	·· <del>···</del> ····		
			<u> </u>						
			i 						
	<u> </u>								

TIME SAMPLED: 31.00

COMMENTS:

Turbidity and dested (>100 NTU)

	SAMPLES TAKEN
	EPA 624
	EPA 625
	EPA 608
	METALS
	CYANIDE
	CHLOR., SULF., etc.
	ASBESTOS
У.	EPA 601
X	EPA 602
ķ	EPA 604

0000122

DATE: 25 Sept. 187

PROJECT NO .: JCO 104H

LOCATION: JASCO

SAMPLERS: P.F.2.

SAMPLE ID: U-Z

384: 38 gals

WATER LEVEL	GALLONS REMOVED	TIME	TEMP. C°	pH	Eh (mY)	COND.	D O mg/1	Q GPM	вон
	6								35.0
	1.0	1:20	66.6	7.01		3340			
	50		1	6.99		180	-		
	10.0	1:27	66.4	7.01		3870		 	
	20.0	1:34	66.2	1		3360			
	<u> </u>	1:40	66-2	7.30		2460			
							·		
					! 		 		
								! 	! 
								·	
							·		
							· 		

TIME SAMPLED: 2:00

COMMENTS: Tich 3 bailers dogether do

Forge well

Bailed nearly dry @ 25 gals (0.3 /6/1)
allowed 20 min is recover and campled

Turbidity not tosted (>100 NTV)

	SAMPLES TAKEN	1
	EPA 624	
	EPA 625	
	EPA 608	
	METALS	
	CYANIDE	
	FPA GOI	
	FPA LOQ	
	EPA 602	
_		
		_
		_

0000122

DATE: 25 Sept. 87

PROJECT NO .: JCO 104 H

LOCATION: JASCO

SAMPLERS: Pof &

SAMPLE ID: V-4

3BY: 55

WATER Level	GALLONS REMOVED	TIME	TEMP. C°	рН	Eh (mY)	COND.	00 mg/1	Q GPM	вон
	Ø								35.0
	1.0	2112	65.0	7.33		490			
	2.0		64.8	7.38		710			
	3.0		64.8	7.36		580			 
	4.0		64.9	7.39		1560			
	5.5	నై:5(	64.8	7.3R		1590			
								•	

TIME	SAMPLED:	2:2	_
		-	

COMMENTS:

Turbidity not dested (>100 NTV)

SAMPLES TAKEN
EPA 624
EPA 625
EPA 608
METALS
CYANIDE
CHLOR., SULF., etc.
ASBESTOS
EPA 601
EPA 602
EPA 604

0000122

DATE: 24 Sept. 187

PROJECT NO .: JCO 104H

LOCATION: JASCO

SAMPLERS: P.F. 2.

SAMPLE ID: V-

3BY: 5.5

WATER Level	GALLONS REMOVED	Time	TEMP, C°	рН	Eh (mY)	COND.	DO mg/I	Q GPM	ВОН
	0								36.5
	1.0	2:55	65.5	7.93	·	1440	 		
	2.0		65.2	7-84		1470			
	3.0	<u></u>	65.1	7.77		1480			
	4.0		65.1	7.72		1480			
	5.5	2:35	65.1	7-71		1480			
								·	
							_		
								·	

TIME SAMPLED: 3:40

COMMENTS: Turbally : 13 NTO

3 e V

EPA 624
EPA 625
EPA 608
METALS
CYANIDE
CHLOR., SULF., 8tc.
ASBESTOS
Y EPA 601
X EPA 602
X EPA 602

0000122

DATE: 24 Sept. 87

PROJECT NO .: JOO 104 H

LOCATION: JASCO

SAMPLERS: GT. S

SAMPLE ID: V. 6

3BY: 14.5

WATER Level	GALLONS REMOVED	TIME	TEMP. C	рΗ	Eh (mV)	COND.	DO mg/1	Q GPM	вон
	Ø								42.7
	1.0	255	66. <b>च</b>	7.50	   <del></del>	1240			
	3.0		66.5	7.52		1410			
	5.0	3:05	663	7.52	······································	1350		-	
	8.0		66.2	7.45		1230			
	11.6		66.1	7.56		1390			
<u></u>	13.0		66.1	7.50		1380			
	15.0	3:17	66.2	7.50		1350			
	<u></u>								
L									

TIME SAMPLED: 3:21

COMMENTS: Turbibily = 76 NTO
3.181

EPA 624

EPA 625

EPA 608

METALS

CYANIDE

CHLOR., SULF., etc.

ASBESTOS

X EPA 601

X EPA 602

Y FPA 604

SAMPLES TAKEN

0000122

DATE: 25 Sept. 187

PROJECT NO .: JCO 104H

LOCATION: JASCO

SAMPLERS: OF 2.

SAMPLE ID: V-7

3BY: 6 €

WATER Level	GALLONS REMOVED	Time	TEMP. C°	Ħq	Eh (m¥)	COND.	D 0 mg/1	Q GPM	BOH
	1								35.5
	1.0	11:01	67.3	J.So		60			
	2.0		67.0	7.21		60			
	3.5		64.0	7.51		1850	l		
	4.5		67.0	Y.53		<u>⊋390</u>			
	25		66.7	7.5.4		640			
	6.0	<u> </u>	66.9	7.24		580			
	6.5	11:14	66.9	7.25		540			<u> </u>
			(7)						

TIME SAMPLED:	{}	;	ţ	سم
---------------	----	---	---	----

COMMENTS: Tookiday was tested (>100 NTU)

	SAMPLES TAKEN
	EPA 624
	EPA 625
	EPA 608
	METALS
	CYANIDE
λ	EPA 601
×	EPA 602
X	EPA GOA

0000122

DATE: 25 Sept. 187

PROJECT NO .: JCO 10+ H

LOCATION: JASCO

SAMPLERS: OF, 2

SAMPLE ID: I - 1

3BY: 155

WATER LEVEL	GALLONS REMOVED	TIME	TEMP. C°	рН	Eh (mY)	COND.	D 0 mg/1	Q GPM	вон
	ø								57.5
	1.0	(2)22	65.7	コ.コン	 	920			
	3.0		65.6	7.74		130			
	<u>=.0</u>	12:08	65.6	7.68		160			<u> </u>
	8.0	ļ	65.4	7.64		760			
	(0.0	12:24	654	7.67		775			
	15.0		650	7.55		200			
	14.0	10:4-2	65.0	7.64		200			<u> </u>
	16.0		65.1	7.62		360			

TIME SAMPLED: 12:45

COMMENTS: Turbility > scale (>100 NTV)

3.181

SAMPLES TAKEN

EPA 624

EPA 625

EPA 808

METALS

CYANIDE

EPA 601

EPA 602

V EPA 604

DATE: 24 Sept. 187

PROJECT NO .: JCO 104 H

LOCATION: JASCO

SAMPLERS: OF 2

SAMPLE ID: I - a

38Y: 15.5

WATER LEVEL	GALLONS REMOVED	Time	TEMP. C°	рН	Eh (m¥)	COND. (micromhos)	DO mg/I	Q GPM	BOH
	Ø								55.0
	1.0	11:17	67.9	7.55		1350			
	2,5	·	67.0	7.67		1350			· · · · · · · · · · · · · · · · · · ·
	5.0	11:23	66.0	7.67		1390			
	10.0		65.5	7.60		1370			
	15.5	11:25	65.4	7.62		1370			

TIME SAMPLED: 11:40

COMMENTS:

Torbidity = 30 NTU

	SAMPLES TAKEN
	EPA 624
	EPA 625
	EPA 608
	METALS
	CYANIDE
	CHLOR., SULF., etc.
	ASBESTOS
X_	EPA 601
Х	EPA 802
メ	EPA GO4

DATE: 24 Sept. 87

PROJECT NO .: JCO 104 H

LOCATION: JASCO

SAMPLERS: P.F.2

SAMPLE ID: I - 3

3BY: 15.5

WATER LEVEL	GALLONS REMOVED	TIME	TEMP, C°	На	Eh (m¥)	COND.	DO mg/I	Q GPM	вон
	Ø								54.5
	1.0	12:20	67.8	7.73		030			
	2.5		67.2	7.71	 	1220			
	5.0	122 6	66.1	7.69		1230		- -	
	10.0	12:31	65.8	7.66		12.50			
	12.5		65.7	7.65		1220			
	15.5	(2:39	65.8	7.66		1230			
	}	<u> </u>				<u></u>			
							<u> </u>		

TIME SAMPLED: 12:40

COMMENTS: Tubbidity: BI NTO

301

EPA 625

EPA 808

METALS

CYANIDE

CHLOR., SULF., 8tc.

ASBESTOS

EPA 601

EPA 802

EPAG04

SAMPLES TAKEN

EPA 624